Zhenyuan Teng, Zhenzong Zhang, Ying Tu, Qitao Zhang, Nan Jian, Liujun Yang, Jiadong Xiao, Jie Ding, Longzhen Huang, Ohno Teruhsia, Chengyin Wang, Dengsong Zhang, Han Yu, Jianmei Lu, Chenliang Su, Bin Liu
{"title":"Asymmetric photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on poly(heptazine imides)","authors":"Zhenyuan Teng, Zhenzong Zhang, Ying Tu, Qitao Zhang, Nan Jian, Liujun Yang, Jiadong Xiao, Jie Ding, Longzhen Huang, Ohno Teruhsia, Chengyin Wang, Dengsong Zhang, Han Yu, Jianmei Lu, Chenliang Su, Bin Liu","doi":"10.1038/s41565-025-01897-1","DOIUrl":null,"url":null,"abstract":"<p>Selective asymmetric oxidation of glycerol (GLY) to hydroxypyruvic acid (HPA) offers an attractive approach for chiral drug synthesis, but this process is highly challenging. Here we develop a photocatalytic method to achieve heterogeneous selective photooxidation of GLY to HPA over rubidium (Rb) and iridium (Ir) catalytic pairs decorated on a poly(heptazine imide) framework. The Rb sites effectively adsorb GLY molecules through the terminal –OH groups, thus inhibiting their oxidation during photoreaction, while the Ir sites enhance the oxygen reduction reaction and the in situ generated surficial oxygen-reduction radicals on Ir can protect the reactive C-centred radical intermediates produced during photooxidation. The spatial arrangement of Rb and Ir sites facilitates hydrogen extraction—an essential rate-determining step for GLY photooxidation—and protects C3 radical intermediates from overoxidation. This photocatalytic system achieves a remarkable productivity for HPA synthesis (~8,000 μmol of HPA per gram of photocatalyst per hour) under visible-light illumination.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"4 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01897-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective asymmetric oxidation of glycerol (GLY) to hydroxypyruvic acid (HPA) offers an attractive approach for chiral drug synthesis, but this process is highly challenging. Here we develop a photocatalytic method to achieve heterogeneous selective photooxidation of GLY to HPA over rubidium (Rb) and iridium (Ir) catalytic pairs decorated on a poly(heptazine imide) framework. The Rb sites effectively adsorb GLY molecules through the terminal –OH groups, thus inhibiting their oxidation during photoreaction, while the Ir sites enhance the oxygen reduction reaction and the in situ generated surficial oxygen-reduction radicals on Ir can protect the reactive C-centred radical intermediates produced during photooxidation. The spatial arrangement of Rb and Ir sites facilitates hydrogen extraction—an essential rate-determining step for GLY photooxidation—and protects C3 radical intermediates from overoxidation. This photocatalytic system achieves a remarkable productivity for HPA synthesis (~8,000 μmol of HPA per gram of photocatalyst per hour) under visible-light illumination.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.