Kanta Horie, Gemma Salvadó, Rama K. Koppisetti, Shorena Janelidze, Nicolas R. Barthélemy, Yingxin He, Chihiro Sato, Brian A. Gordon, Hong Jiang, Tammie L. S. Benzinger, Erik Stomrud, David M. Holtzman, Niklas Mattsson-Carlgren, John C. Morris, Sebastian Palmqvist, Rik Ossenkoppele, Suzanne E. Schindler, Oskar Hansson, Randall J. Bateman
{"title":"Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer’s disease","authors":"Kanta Horie, Gemma Salvadó, Rama K. Koppisetti, Shorena Janelidze, Nicolas R. Barthélemy, Yingxin He, Chihiro Sato, Brian A. Gordon, Hong Jiang, Tammie L. S. Benzinger, Erik Stomrud, David M. Holtzman, Niklas Mattsson-Carlgren, John C. Morris, Sebastian Palmqvist, Rik Ossenkoppele, Suzanne E. Schindler, Oskar Hansson, Randall J. Bateman","doi":"10.1038/s41591-025-03617-7","DOIUrl":null,"url":null,"abstract":"<p>Insoluble tau aggregates within neurofibrillary tangles are a defining neuropathological feature of Alzheimer’s disease (AD) and closely correlate with clinical symptoms. Although tau pathology can be assessed using tau positron emission tomography, a more accessible biomarker is needed for diagnosis, prognosis and tracking treatment effects. Here we present a new plasma tau species, the endogenously cleaved, microtubule-binding region containing residue 243 (eMTBR-tau243), which specifically reflects tau tangle pathology. Across the AD spectrum in three different cohorts (<i>n</i> = 108, 55 and 739), plasma eMTBR-tau243 levels were significantly elevated at the mild cognitive impairment stage and increased further in dementia. Plasma eMTBR-tau243 showed strong associations with tau positron emission tomography binding (<i>β</i> = 0.72, <i>R</i><sup>2</sup> = 0.56) and cognitive performance (<i>β</i> = 0.60, <i>R</i><sup>2</sup> = 0.40), outperforming other plasma tau (%p-tau217 and %p-tau205) biomarkers. These results suggest that plasma eMTBR-tau243 may be useful for estimating the tauopathy load in AD, thereby improving the diagnostic evaluation of AD in clinical practice and monitoring the efficacy of tau-targeted therapies in clinical trials.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"38 1","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03617-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insoluble tau aggregates within neurofibrillary tangles are a defining neuropathological feature of Alzheimer’s disease (AD) and closely correlate with clinical symptoms. Although tau pathology can be assessed using tau positron emission tomography, a more accessible biomarker is needed for diagnosis, prognosis and tracking treatment effects. Here we present a new plasma tau species, the endogenously cleaved, microtubule-binding region containing residue 243 (eMTBR-tau243), which specifically reflects tau tangle pathology. Across the AD spectrum in three different cohorts (n = 108, 55 and 739), plasma eMTBR-tau243 levels were significantly elevated at the mild cognitive impairment stage and increased further in dementia. Plasma eMTBR-tau243 showed strong associations with tau positron emission tomography binding (β = 0.72, R2 = 0.56) and cognitive performance (β = 0.60, R2 = 0.40), outperforming other plasma tau (%p-tau217 and %p-tau205) biomarkers. These results suggest that plasma eMTBR-tau243 may be useful for estimating the tauopathy load in AD, thereby improving the diagnostic evaluation of AD in clinical practice and monitoring the efficacy of tau-targeted therapies in clinical trials.
期刊介绍:
Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors.
Nature Medicine consider all types of clinical research, including:
-Case-reports and small case series
-Clinical trials, whether phase 1, 2, 3 or 4
-Observational studies
-Meta-analyses
-Biomarker studies
-Public and global health studies
Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.