Doyeon Kim, Pojeong Park, Xiuyuan Li, J. David Wong-Campos, He Tian, Eric M. Moult, Jonathan B. Grimm, Luke D. Lavis, Adam E. Cohen
{"title":"EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation","authors":"Doyeon Kim, Pojeong Park, Xiuyuan Li, J. David Wong-Campos, He Tian, Eric M. Moult, Jonathan B. Grimm, Luke D. Lavis, Adam E. Cohen","doi":"10.1038/s41593-025-01922-5","DOIUrl":null,"url":null,"abstract":"<p>A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"131 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01922-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.