Guoqiang Zhao , Juanjuan Wang , Wenjing Chen , Wanying Zhang , Lei Jin , Xing Huang
{"title":"Environmental sulfonamides pollution and microbial adaptation: Genome, transcriptome, and toxicology reveal Bacillus sp. HC-1 biotransformation and antibiotic resistance mechanisms","authors":"Guoqiang Zhao , Juanjuan Wang , Wenjing Chen , Wanying Zhang , Lei Jin , Xing Huang","doi":"10.1016/j.jhazmat.2025.138089","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfonamides (SAs) residue in the environment presents significant challenges to both environmental safety and medical security. Currently, the reaction and transformation mechanisms of microorganisms in the presence of SAs remain unclear. This study employed multiomics to investigate the gene response and enzymatic transformation mechanisms of <em>Bacillus</em> sp. HC-1 under SAs exposure conditions. Strain HC-1 demonstrated the ability to transform sulfaquinoxaline (SQX), sulfamethoxazole (SMX), and sulfamethazine (SMZ) into their respective N<sub>4</sub>-acetylated products. Within 12 hours, the transformation rates of SQX, SMX, and SMZ reached 51.7 %, 44.7 %, and 42.70 % respectively. Transcriptome analysis revealed that differentially expressed genes (DEGs) related to cellular transport, membrane channel activity, and various metabolic pathways were significantly enriched in strain HC-1 exposed to SQX. Through genomic analysis, we identified three types of arylamine N-acetyltransferases (NATs), which were named BaNATA, BaNATB, and BaNATC. Their highest homologies with reported NATs were 35.29 %, 40.82 %, and 35.32 %, respectively. Resistance and toxicological assessments indicated that NATs functioned as resistance genes against SAs, and the toxicity of transformation products to microorganisms and plant seeds was diminished. This study offers a valuable reference for a more in-depth understanding of microbial reactions, potential resistance, and transformation mechanisms in antibiotic-contaminated environments.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138089"},"PeriodicalIF":11.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425010040","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfonamides (SAs) residue in the environment presents significant challenges to both environmental safety and medical security. Currently, the reaction and transformation mechanisms of microorganisms in the presence of SAs remain unclear. This study employed multiomics to investigate the gene response and enzymatic transformation mechanisms of Bacillus sp. HC-1 under SAs exposure conditions. Strain HC-1 demonstrated the ability to transform sulfaquinoxaline (SQX), sulfamethoxazole (SMX), and sulfamethazine (SMZ) into their respective N4-acetylated products. Within 12 hours, the transformation rates of SQX, SMX, and SMZ reached 51.7 %, 44.7 %, and 42.70 % respectively. Transcriptome analysis revealed that differentially expressed genes (DEGs) related to cellular transport, membrane channel activity, and various metabolic pathways were significantly enriched in strain HC-1 exposed to SQX. Through genomic analysis, we identified three types of arylamine N-acetyltransferases (NATs), which were named BaNATA, BaNATB, and BaNATC. Their highest homologies with reported NATs were 35.29 %, 40.82 %, and 35.32 %, respectively. Resistance and toxicological assessments indicated that NATs functioned as resistance genes against SAs, and the toxicity of transformation products to microorganisms and plant seeds was diminished. This study offers a valuable reference for a more in-depth understanding of microbial reactions, potential resistance, and transformation mechanisms in antibiotic-contaminated environments.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.