Weakly anion-driven solvation towards stable operation of carbonate ester-based sodium metal batteries at − 40°C

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Fei Huang, Yunpeng Zhong, Mulam Qin, Jilong Qiu, Chao Hu, Peng Xu, Hanqi Zhang, Chaoyi Sheng, Shuquan Liang, Guozhao Fang
{"title":"Weakly anion-driven solvation towards stable operation of carbonate ester-based sodium metal batteries at − 40°C","authors":"Fei Huang, Yunpeng Zhong, Mulam Qin, Jilong Qiu, Chao Hu, Peng Xu, Hanqi Zhang, Chaoyi Sheng, Shuquan Liang, Guozhao Fang","doi":"10.1016/j.cej.2025.162150","DOIUrl":null,"url":null,"abstract":"Carbonate ester-based electrolyte are crucial to support practical sodium-metal batteries (SMBs) due to their favourable oxidative stability and low cost. However, the stable operation for SMBs at − 40 °C with carbonate ester-based electrolyte remains a tremendous challenge owing to sluggish kinetic of Na<sup>+</sup> desolvation and Na<sup>+</sup> migration through solid electrolyte interphase (SEI). Hence, we construct stable operation of ultralow-temperature SMBs at − 40 °C via a weakly anion-drived solvation of carbonate-ester electrolyte with low concentration, which endows high Na<sup>+</sup> conductivity and low Na<sup>+</sup> desolvation barrier. Anion-driven solvation is favor of forming a roust Na<sup>+</sup>-conductive NaF-rich SEI film, thereby stabilizing SMBs at low temperature. As a result, symmetrical cells achieve long cyclic stability for 1000 h at − 20 °C. In addition, the SMBs matching the P2-type Na<sub>0.75</sub>Ni<sub>0.34</sub>Mn<sub>0.66</sub>O<sub>2</sub> (NNMO) cathode with an electrochemical window of 4.15 V achieve the high capacity retention of 91.5 % after 600 cycles at − 20 °C and 85.4 % after 160 cycles at − 40 °C. Moreover, pouch cell with high energy density (227.4W h kg<sup>−1</sup>) and high-loading cathode (11.76mg cm<sup>−2</sup>) provides a stable 100 cycle at − 20 °C. The optimized carbonate ester electrolyte provides vital insights into developing ultra-low-temperature SMBs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"19 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.162150","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonate ester-based electrolyte are crucial to support practical sodium-metal batteries (SMBs) due to their favourable oxidative stability and low cost. However, the stable operation for SMBs at − 40 °C with carbonate ester-based electrolyte remains a tremendous challenge owing to sluggish kinetic of Na+ desolvation and Na+ migration through solid electrolyte interphase (SEI). Hence, we construct stable operation of ultralow-temperature SMBs at − 40 °C via a weakly anion-drived solvation of carbonate-ester electrolyte with low concentration, which endows high Na+ conductivity and low Na+ desolvation barrier. Anion-driven solvation is favor of forming a roust Na+-conductive NaF-rich SEI film, thereby stabilizing SMBs at low temperature. As a result, symmetrical cells achieve long cyclic stability for 1000 h at − 20 °C. In addition, the SMBs matching the P2-type Na0.75Ni0.34Mn0.66O2 (NNMO) cathode with an electrochemical window of 4.15 V achieve the high capacity retention of 91.5 % after 600 cycles at − 20 °C and 85.4 % after 160 cycles at − 40 °C. Moreover, pouch cell with high energy density (227.4W h kg−1) and high-loading cathode (11.76mg cm−2) provides a stable 100 cycle at − 20 °C. The optimized carbonate ester electrolyte provides vital insights into developing ultra-low-temperature SMBs.

Abstract Image

碳酸酯类电解质因其良好的氧化稳定性和低成本而成为支持实用钠金属电池(SMB)的关键。然而,由于 Na+ 脱溶和 Na+ 通过固体电解质相间层(SEI)迁移的动力学速度缓慢,因此使用碳酸酯类电解质在零下 40 ℃ 稳定运行钠金属电池仍然是一个巨大的挑战。因此,我们通过低浓度碳酸酯电解质的弱阴离子驱动溶解,构建了可在零下 40 ℃ 稳定运行的超低温 SMB,这种电解质具有高 Na+ 传导性和低 Na+ 脱溶障碍。阴离子驱动的溶解有利于形成富含 NaF 的导电 Na+ SEI 膜,从而在低温下稳定 SMB。因此,对称电池在零下 20 °C的条件下实现了 1000 小时的长期循环稳定性。此外,与电化学窗口为 4.15 V 的 P2- 型 Na0.75Ni0.34Mn0.66O2 (NNMO) 阴极相匹配的 SMB 电池在零下 20 °C 循环 600 次后可实现 91.5% 的高容量保持率,在零下 40 °C 循环 160 次后可实现 85.4% 的高容量保持率。此外,具有高能量密度(227.4W h kg-1)和高负载阴极(11.76mg cm-2)的袋式电池可在 - 20 °C 下稳定循环 100 次。优化的碳酸酯电解质为开发超低温 SMB 提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信