Xiangjing Liu, Yixian Qiu, Oscar Dahlsten, Vlatko Vedral
{"title":"Quantum causal inference with extremely light touch","authors":"Xiangjing Liu, Yixian Qiu, Oscar Dahlsten, Vlatko Vedral","doi":"10.1038/s41534-024-00956-0","DOIUrl":null,"url":null,"abstract":"<p>We give a causal inference scheme using quantum observations alone for a case with both temporal and spatial correlations: a bipartite quantum system with measurements at two times. The protocol determines compatibility with five causal structures distinguished by the direction of causal influence and whether there are initial correlations. We derive and exploit a closed-form expression for the spacetime pseudo-density matrix (PDM) for many times and qubits. This PDM can be determined by light-touch coarse-grained measurements alone. We prove that if there is no signalling between two subsystems, the reduced state of the PDM cannot have negativity, regardless of initial spatial correlations. In addition, the protocol exploits the time asymmetry of the PDM to determine the temporal order. The protocol succeeds for a state with coherence undergoing a fully decohering channel. Thus coherence in the channel is not necessary for the quantum advantage of causal inference from observations alone.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"131 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00956-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We give a causal inference scheme using quantum observations alone for a case with both temporal and spatial correlations: a bipartite quantum system with measurements at two times. The protocol determines compatibility with five causal structures distinguished by the direction of causal influence and whether there are initial correlations. We derive and exploit a closed-form expression for the spacetime pseudo-density matrix (PDM) for many times and qubits. This PDM can be determined by light-touch coarse-grained measurements alone. We prove that if there is no signalling between two subsystems, the reduced state of the PDM cannot have negativity, regardless of initial spatial correlations. In addition, the protocol exploits the time asymmetry of the PDM to determine the temporal order. The protocol succeeds for a state with coherence undergoing a fully decohering channel. Thus coherence in the channel is not necessary for the quantum advantage of causal inference from observations alone.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.