Compressive strain engineering in inclined SnSb2Te4 thin film for high-performance TTE photodetection

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mingjing Chen, Zihao Chen, Yangyang Zhen, Tianchang Qin, Xin Qian, Shufang Wang
{"title":"Compressive strain engineering in inclined SnSb2Te4 thin film for high-performance TTE photodetection","authors":"Mingjing Chen, Zihao Chen, Yangyang Zhen, Tianchang Qin, Xin Qian, Shufang Wang","doi":"10.1016/j.apsusc.2025.163108","DOIUrl":null,"url":null,"abstract":"Self-powered photodetectors based on the transverse thermoelectric (TTE) effect have attracted significant attentions due to their ultrasensitive detection and sub-100-ns-level response speeds. However,<!-- --> <!-- -->achieving<!-- --> <!-- -->practically viable detection sensitivity<!-- --> <!-- -->remains a critical challenge in this emerging field. Here, we propose a substrate-induced-compressive strain strategy to enhance the TTE performance in <em>c</em>-axis inclined SnSb<sub>2</sub>Te<sub>4</sub> thin films.<!-- --> <!-- -->Through systematic investigation of three lattice-mismatched substrates (MgO, SrTiO<sub>3</sub>, and LaAlO<sub>3</sub>), the controlled strains (up to 12 % for LaAlO<sub>3</sub>) enhance electrical conductivity, suppress thermal conductivity, and amplify Seebeck coefficient anisotropy. This synergistic optimization<!-- --> <!-- -->enables<!-- --> <!-- -->superior TTE detection performance under 308 nm UV pulsed laser<!-- --> <!-- -->irradiation, whose<!-- --> <!-- -->record-high sensitivity is 20.5 V/mJ, ultrafast response time is 73 ns and exceptional figure of merit (<em>F</em><sub>m</sub>) is 566 mV/ns. Our findings<!-- --> <!-- -->not only position SnSb<sub>2</sub>Te<sub>4</sub> as a prime candidate for<!-- --> <!-- -->weak-signal UV photodetection<!-- --> <!-- -->but also establish substrate-induced-compressive strain as<!-- --> <!-- -->a universal strategy for developing high-sensitivity and fast-response TTE photodetectors.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Self-powered photodetectors based on the transverse thermoelectric (TTE) effect have attracted significant attentions due to their ultrasensitive detection and sub-100-ns-level response speeds. However, achieving practically viable detection sensitivity remains a critical challenge in this emerging field. Here, we propose a substrate-induced-compressive strain strategy to enhance the TTE performance in c-axis inclined SnSb2Te4 thin films. Through systematic investigation of three lattice-mismatched substrates (MgO, SrTiO3, and LaAlO3), the controlled strains (up to 12 % for LaAlO3) enhance electrical conductivity, suppress thermal conductivity, and amplify Seebeck coefficient anisotropy. This synergistic optimization enables superior TTE detection performance under 308 nm UV pulsed laser irradiation, whose record-high sensitivity is 20.5 V/mJ, ultrafast response time is 73 ns and exceptional figure of merit (Fm) is 566 mV/ns. Our findings not only position SnSb2Te4 as a prime candidate for weak-signal UV photodetection but also establish substrate-induced-compressive strain as a universal strategy for developing high-sensitivity and fast-response TTE photodetectors.

Abstract Image

基于横向热电效应(TTE)的自供电光电探测器因其超灵敏的检测和亚 100-ns 级的响应速度而备受关注。然而,实现实际可行的检测灵敏度仍然是这一新兴领域的关键挑战。在此,我们提出了一种基底诱导压缩应变策略,以增强 c 轴倾斜 SnSb2Te4 薄膜的 TTE 性能。通过对三种晶格不匹配基底(氧化镁、钛酸锶和氧化铝)的系统研究,受控应变(氧化铝高达 12%)增强了导电性,抑制了热导率,并放大了塞贝克系数各向异性。在 308 nm 紫外脉冲激光辐照下,这种协同优化实现了卓越的 TTE 检测性能,其灵敏度达到创纪录的 20.5 V/mJ,超快响应时间为 73 ns,优异性能指标 (Fm) 为 566 mV/ns。我们的研究结果不仅将 SnSb2Te4 定位为弱信号紫外光检测的主要候选材料,还将基底诱导压缩应变确立为开发高灵敏度和快速响应 TTE 光检测器的通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信