Damir Suljević , Patrik Karlsson , Muhamed Fočak , Maja Mitrašinović Brulić , Jasmina Sulejmanović , Elma Šehović , Eva Särndahl , Magnus Engwall , Andi Alijagic
{"title":"Microplastics and nanoplastics co-exposure modulates chromium bioaccumulation and physiological responses in rats","authors":"Damir Suljević , Patrik Karlsson , Muhamed Fočak , Maja Mitrašinović Brulić , Jasmina Sulejmanović , Elma Šehović , Eva Särndahl , Magnus Engwall , Andi Alijagic","doi":"10.1016/j.envint.2025.109421","DOIUrl":null,"url":null,"abstract":"<div><div>The environmental fragmentation of plastics generates a mixture of plastic particles of various sizes, which frequently co-occur with other mobile and persistent environmental pollutants. Despite the prevalence of such scenarios, the interaction between micro- and nanoplastics (MNPs) and their combined effects with environmental pollutants, such as highly toxic hexavalent chromium (Cr(VI)), remain almost entirely unexplored in mammalian species. This study demonstrated that nanoplastic and microplastic particles co-aggregate and together influence Cr bioaccumulation patterns and related physiological alterations in rats. Following a four-week repeated intragastric exposure of Wistar rats to MNPs and Cr(VI), either alone or in combination, MNPs significantly enhanced Cr bioaccumulation in the liver, heart, brain, and skin. Under co-exposure conditions, Cr(VI) was the primary driver of cellular effects observed in the blood, including shifts in immune cell subpopulations (e.g., neutrophils, lymphocytes) and alterations in red blood cell indices, while serum biochemistry reflected limited physiological stress. MNPs <em>per se</em> decreased creatine kinase activity and increased cholesterol levels. In summary, polystyrene MNPs increase Cr(VI) distribution and bioavailability, but co-exposure does not uniformly exacerbate toxicity. Instead, their interaction may selectively alter physiological responses, emphasizing the need for a deeper understanding of their combined effects and potential health risks.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"198 ","pages":"Article 109421"},"PeriodicalIF":10.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025001722","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental fragmentation of plastics generates a mixture of plastic particles of various sizes, which frequently co-occur with other mobile and persistent environmental pollutants. Despite the prevalence of such scenarios, the interaction between micro- and nanoplastics (MNPs) and their combined effects with environmental pollutants, such as highly toxic hexavalent chromium (Cr(VI)), remain almost entirely unexplored in mammalian species. This study demonstrated that nanoplastic and microplastic particles co-aggregate and together influence Cr bioaccumulation patterns and related physiological alterations in rats. Following a four-week repeated intragastric exposure of Wistar rats to MNPs and Cr(VI), either alone or in combination, MNPs significantly enhanced Cr bioaccumulation in the liver, heart, brain, and skin. Under co-exposure conditions, Cr(VI) was the primary driver of cellular effects observed in the blood, including shifts in immune cell subpopulations (e.g., neutrophils, lymphocytes) and alterations in red blood cell indices, while serum biochemistry reflected limited physiological stress. MNPs per se decreased creatine kinase activity and increased cholesterol levels. In summary, polystyrene MNPs increase Cr(VI) distribution and bioavailability, but co-exposure does not uniformly exacerbate toxicity. Instead, their interaction may selectively alter physiological responses, emphasizing the need for a deeper understanding of their combined effects and potential health risks.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.