Kathrin Froschauer, Sarah L. Svensson, Rick Gelhausen, Elisabetta Fiore, Philipp Kible, Alicia Klaude, Martin Kucklick, Stephan Fuchs, Florian Eggenhofer, Chao Yang, Daniel Falush, Susanne Engelmann, Rolf Backofen, Cynthia M. Sharma
{"title":"Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni","authors":"Kathrin Froschauer, Sarah L. Svensson, Rick Gelhausen, Elisabetta Fiore, Philipp Kible, Alicia Klaude, Martin Kucklick, Stephan Fuchs, Florian Eggenhofer, Chao Yang, Daniel Falush, Susanne Engelmann, Rolf Backofen, Cynthia M. Sharma","doi":"10.1038/s41467-025-58329-w","DOIUrl":null,"url":null,"abstract":"<p>In contrast to transcriptome maps, bacterial small protein (≤50-100 aa) coding landscapes, including overlapping genes, are poorly characterized. However, an emerging number of small proteins have crucial roles in bacterial physiology and virulence. Here, we present a Ribo-seq-based high-resolution translatome map for the major foodborne pathogen <i>Campylobacter jejuni</i>. Besides conventional Ribo-seq, we employed translation initiation site (TIS) profiling to map start codons and also developed a translation termination site (TTS) profiling approach, which revealed stop codons not apparent from the reference genome in virulence loci. Our integrated approach combined with independent validation expanded the small proteome by two-fold, including CioY, a new 34 aa component of the CioAB oxidase. Overall, our study generates a high-resolution annotation of the <i>C. jejuni</i> coding landscape, provided in an interactive browser, and showcases a strategy for applying integrated Ribo-seq to other species to enrich our understanding of small proteomes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"32 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58329-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to transcriptome maps, bacterial small protein (≤50-100 aa) coding landscapes, including overlapping genes, are poorly characterized. However, an emerging number of small proteins have crucial roles in bacterial physiology and virulence. Here, we present a Ribo-seq-based high-resolution translatome map for the major foodborne pathogen Campylobacter jejuni. Besides conventional Ribo-seq, we employed translation initiation site (TIS) profiling to map start codons and also developed a translation termination site (TTS) profiling approach, which revealed stop codons not apparent from the reference genome in virulence loci. Our integrated approach combined with independent validation expanded the small proteome by two-fold, including CioY, a new 34 aa component of the CioAB oxidase. Overall, our study generates a high-resolution annotation of the C. jejuni coding landscape, provided in an interactive browser, and showcases a strategy for applying integrated Ribo-seq to other species to enrich our understanding of small proteomes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.