Quantitative PET imaging and modeling of molecular blood-brain barrier permeability

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kevin J. Chung, Yasser G. Abdelhafez, Benjamin A. Spencer, Terry Jones, Quyen Tran, Lorenzo Nardo, Moon S. Chen, Souvik Sarkar, Valentina Medici, Victoria Lyo, Ramsey D. Badawi, Simon R. Cherry, Guobao Wang
{"title":"Quantitative PET imaging and modeling of molecular blood-brain barrier permeability","authors":"Kevin J. Chung, Yasser G. Abdelhafez, Benjamin A. Spencer, Terry Jones, Quyen Tran, Lorenzo Nardo, Moon S. Chen, Souvik Sarkar, Valentina Medici, Victoria Lyo, Ramsey D. Badawi, Simon R. Cherry, Guobao Wang","doi":"10.1038/s41467-025-58356-7","DOIUrl":null,"url":null,"abstract":"<p>Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"58 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58356-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.

Abstract Image

血脑屏障通透性的神经成像技术在确定血脑屏障广泛参与神经和全身疾病方面发挥了重要作用。然而,目前的方法主要将血脑屏障作为结构屏障进行评估。在此,我们开发了一种非侵入性正电子发射断层扫描方法,用于测量分子放射性核素的血脑屏障通透性,这种分子放射性核素可通过其分子特异性转运机制穿过血脑屏障。我们的方法利用高时间分辨率动态成像和动力学模型对分子放射性核素的血脑屏障通透性-表面积乘积进行多参数成像和量化。我们显示,在人体中,我们的方法可以解析三种放射性核素的血脑屏障通透性,并证明了它在研究代谢功能障碍相关脂肪肝炎症的脑衰老和脑体相互作用方面的实用性。我们的方法为利用现有的大量分子正电子发射断层扫描示踪剂有效研究体内人体血脑屏障的分子通透性开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信