Sepsis in silico: definition, development and application of an electronic phenotype for sepsis.

Zahraa Al-Sultani, Timothy Jj Inglis, Benjamin McFadden, Elizabeth Thomas, Mark Reynolds
{"title":"Sepsis <i>in silico</i>: definition, development and application of an electronic phenotype for sepsis.","authors":"Zahraa Al-Sultani, Timothy Jj Inglis, Benjamin McFadden, Elizabeth Thomas, Mark Reynolds","doi":"10.1099/jmm.0.001986","DOIUrl":null,"url":null,"abstract":"<p><p>Repurposing electronic health record (EHR) or electronic medical record (EMR) data holds significant promise for evidence-based epidemic intelligence and research. Key challenges include sepsis recognition by physicians and issues with EHR and EMR data. Recent advances in data-driven techniques, alongside initiatives like the Surviving Sepsis Campaign and the Severe Sepsis and Septic Shock Management Bundle (SEP-1), have improved sepsis definition, early detection, subtype characterization, prognostication and personalized treatment. This includes identifying potential biomarkers or digital signatures to enhance diagnosis, guide therapy and optimize clinical management. Machine learning applications play a crucial role in identifying biomarkers and digital signatures associated with sepsis and its sub-phenotypes. Additionally, electronic phenotyping, leveraging EHR and EMR data, has emerged as a valuable tool for evidence-based sepsis identification and management. This review examines methods for identifying sepsis cohorts, focusing on two main approaches: utilizing health administrative data with standardized diagnostic coding via the International Classification of Diseases and integrating clinical data. This overview provides a comprehensive analysis of current cohort identification and electronic phenotyping strategies for sepsis, highlighting their potential applications and challenges. The accuracy of an electronic phenotype or signature is pivotal for precision medicine, enabling a shift from subjective clinical descriptions to data-driven insights.</p>","PeriodicalId":94093,"journal":{"name":"Journal of medical microbiology","volume":"74 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/jmm.0.001986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Repurposing electronic health record (EHR) or electronic medical record (EMR) data holds significant promise for evidence-based epidemic intelligence and research. Key challenges include sepsis recognition by physicians and issues with EHR and EMR data. Recent advances in data-driven techniques, alongside initiatives like the Surviving Sepsis Campaign and the Severe Sepsis and Septic Shock Management Bundle (SEP-1), have improved sepsis definition, early detection, subtype characterization, prognostication and personalized treatment. This includes identifying potential biomarkers or digital signatures to enhance diagnosis, guide therapy and optimize clinical management. Machine learning applications play a crucial role in identifying biomarkers and digital signatures associated with sepsis and its sub-phenotypes. Additionally, electronic phenotyping, leveraging EHR and EMR data, has emerged as a valuable tool for evidence-based sepsis identification and management. This review examines methods for identifying sepsis cohorts, focusing on two main approaches: utilizing health administrative data with standardized diagnostic coding via the International Classification of Diseases and integrating clinical data. This overview provides a comprehensive analysis of current cohort identification and electronic phenotyping strategies for sepsis, highlighting their potential applications and challenges. The accuracy of an electronic phenotype or signature is pivotal for precision medicine, enabling a shift from subjective clinical descriptions to data-driven insights.

硅脓毒症:脓毒症电子表型的定义、发展和应用。
重新利用电子健康记录(EHR)或电子医疗记录(EMR)数据为基于证据的流行病情报和研究带来了重大希望。主要挑战包括医生对败血症的识别以及电子病历和电子病历数据的问题。数据驱动技术的最新进展,以及幸存脓毒症运动和严重脓毒症和脓毒症休克管理捆绑计划(SEP-1)等举措,改进了脓毒症的定义、早期检测、亚型表征、预后和个性化治疗。这包括识别潜在的生物标志物或数字签名,以加强诊断、指导治疗和优化临床管理。机器学习应用在识别与败血症及其亚表型相关的生物标志物和数字签名方面发挥着至关重要的作用。此外,利用电子病历和电子病历数据的电子表型分析已成为基于证据的败血症识别和管理的宝贵工具。本综述探讨了识别脓毒症队列的方法,重点关注两种主要方法:通过国际疾病分类利用具有标准化诊断编码的卫生管理数据和整合临床数据。这篇综述提供了对当前脓毒症的队列识别和电子表型策略的全面分析,强调了它们的潜在应用和挑战。电子表型或特征的准确性对于精准医疗至关重要,使其能够从主观临床描述转变为数据驱动的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信