{"title":"Antiferroelectric Altermagnets: Antiferroelectricity Alters Magnets.","authors":"Xunkai Duan, Jiayong Zhang, Ziye Zhu, Yuntian Liu, Zhenyu Zhang, Igor Žutić, Tong Zhou","doi":"10.1103/PhysRevLett.134.106801","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 10","pages":"106801"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.106801","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks