PLANES: Plausibility analysis of epidemiological signals.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0320442
V P Nagraj, Amy E Benefield, Desiree Williams, Stephen D Turner
{"title":"PLANES: Plausibility analysis of epidemiological signals.","authors":"V P Nagraj, Amy E Benefield, Desiree Williams, Stephen D Turner","doi":"10.1371/journal.pone.0320442","DOIUrl":null,"url":null,"abstract":"<p><p>Methods for reviewing epidemiological signals are necessary to building and maintaining data-driven public health capabilities. We have developed a novel approach for assessing the plausibility of infectious disease forecasts and surveillance data. The PLANES (PLausibility ANalysis of Epidemiological Signals) methodology is designed to be multi-dimensional and flexible, yielding an overall score based on individual component assessments that can be applied at various temporal and spatial granularities. Here we describe PLANES, provide a demonstration analysis, and discuss how to use the open-source rplanes R package. PLANES aims to enable modelers and public health end-users to evaluate forecast plausibility and surveillance data integrity, ultimately improving early warning systems and informing evidence-based decision-making.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0320442"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320442","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methods for reviewing epidemiological signals are necessary to building and maintaining data-driven public health capabilities. We have developed a novel approach for assessing the plausibility of infectious disease forecasts and surveillance data. The PLANES (PLausibility ANalysis of Epidemiological Signals) methodology is designed to be multi-dimensional and flexible, yielding an overall score based on individual component assessments that can be applied at various temporal and spatial granularities. Here we describe PLANES, provide a demonstration analysis, and discuss how to use the open-source rplanes R package. PLANES aims to enable modelers and public health end-users to evaluate forecast plausibility and surveillance data integrity, ultimately improving early warning systems and informing evidence-based decision-making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信