{"title":"The relative landmark shift during free movement on a treadmill may enhance visual learning for ant foragers.","authors":"Akihiro Takahara, Tomoko Sakiyama","doi":"10.1007/s00359-025-01738-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ants are known for their sophisticated navigational abilities and rely on various cues to locate food sources efficiently. Visual landmarks play a crucial role in guiding foraging behavior. However, the significance of walking ants perceiving the relative motion of a landmark to themselves during learning is still not fully understood. Here, Japanese carpenter ants were observed on a treadmill device where they could walk in place on the treadmill. Two types of conditions were set for the training process: the fixed condition involved a stationary landmark, and the moving condition featured a landmark oscillating at a constant speed from side to side after feeding, which was independent of the movements of the ants. In the Y-maze test, a significantly greater number of ants in the moving training condition associated the landmark with food (82% of the ants) than in the fixed training condition (56% of the ants). Our results thus suggest that perceiving the relative movement of landmarks during the learning process on a treadmill is important for ant foragers.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01738-5","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ants are known for their sophisticated navigational abilities and rely on various cues to locate food sources efficiently. Visual landmarks play a crucial role in guiding foraging behavior. However, the significance of walking ants perceiving the relative motion of a landmark to themselves during learning is still not fully understood. Here, Japanese carpenter ants were observed on a treadmill device where they could walk in place on the treadmill. Two types of conditions were set for the training process: the fixed condition involved a stationary landmark, and the moving condition featured a landmark oscillating at a constant speed from side to side after feeding, which was independent of the movements of the ants. In the Y-maze test, a significantly greater number of ants in the moving training condition associated the landmark with food (82% of the ants) than in the fixed training condition (56% of the ants). Our results thus suggest that perceiving the relative movement of landmarks during the learning process on a treadmill is important for ant foragers.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.