Plant size influences specific leaf area in palms: a case for the diminishing returns hypothesis.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Gerardo Avalos, Kaila Frazer, Hélène Le Gall
{"title":"Plant size influences specific leaf area in palms: a case for the diminishing returns hypothesis.","authors":"Gerardo Avalos, Kaila Frazer, Hélène Le Gall","doi":"10.1007/s00442-025-05698-0","DOIUrl":null,"url":null,"abstract":"<p><p>Body size is essential in determining an organism's functional performance and metabolic requirements, influencing biological processes from organisms to ecosystems. Metabolic scaling theory integrates the size-metabolism relationship, yet most research overlooks intraspecific trait variation due to ontogeny. Specific leaf area (SLA) is a critical functional trait that reflects investment on photosynthetic tissues relative to leaf construction costs. SLA influences photosynthetic capacity and growth rates and varies across life stages. While plants exhibit interspecific differences in acquisitive (high SLA, fast growth) and conservative (low SLA, slow growth) strategies, the diminishing returns hypothesis suggests that these strategies are shaped by the proportion of supporting structures that develop over the plant´s lifespan (intraspecific variation), predicting a negative SLA relationship with increasing size. In tropical environments, palms are ecologically important yet still understudied in functional traits. Here, we examine the relationship between SLA and size in six neotropical understory and canopy palm species (236 individuals). Results showed higher SLA in understory species and a negative SLA-size relationship across most species. SLA inversely correlated with leaf thickness and leaf water content. ANCOVA models explained substantial SLA variation related to palm size, with species-specific differences in regression slopes. These findings underscore the importance of considering inter- and intraspecific SLA variation and ontogenetic changes. Understanding the trade-off between acquisitive and conservative strategies within the context of the diminishing returns hypothesis offers insights into plant growth strategies and their ecological implications, which is essential for predicting plant adaptation to environmental gradients.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 4","pages":"56"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05698-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Body size is essential in determining an organism's functional performance and metabolic requirements, influencing biological processes from organisms to ecosystems. Metabolic scaling theory integrates the size-metabolism relationship, yet most research overlooks intraspecific trait variation due to ontogeny. Specific leaf area (SLA) is a critical functional trait that reflects investment on photosynthetic tissues relative to leaf construction costs. SLA influences photosynthetic capacity and growth rates and varies across life stages. While plants exhibit interspecific differences in acquisitive (high SLA, fast growth) and conservative (low SLA, slow growth) strategies, the diminishing returns hypothesis suggests that these strategies are shaped by the proportion of supporting structures that develop over the plant´s lifespan (intraspecific variation), predicting a negative SLA relationship with increasing size. In tropical environments, palms are ecologically important yet still understudied in functional traits. Here, we examine the relationship between SLA and size in six neotropical understory and canopy palm species (236 individuals). Results showed higher SLA in understory species and a negative SLA-size relationship across most species. SLA inversely correlated with leaf thickness and leaf water content. ANCOVA models explained substantial SLA variation related to palm size, with species-specific differences in regression slopes. These findings underscore the importance of considering inter- and intraspecific SLA variation and ontogenetic changes. Understanding the trade-off between acquisitive and conservative strategies within the context of the diminishing returns hypothesis offers insights into plant growth strategies and their ecological implications, which is essential for predicting plant adaptation to environmental gradients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信