Hollow-core PCF for terahertz sensing: A new approach for ethanol and benzene detection.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0320805
Md Golam Sadeque, Suchana Aktar Tithi, Md Safiul Islam, A H M Iftekharul Ferdous, Diponkar Kundu, Md Galib Hasan, Md Zakirul Islam Sarker
{"title":"Hollow-core PCF for terahertz sensing: A new approach for ethanol and benzene detection.","authors":"Md Golam Sadeque, Suchana Aktar Tithi, Md Safiul Islam, A H M Iftekharul Ferdous, Diponkar Kundu, Md Galib Hasan, Md Zakirul Islam Sarker","doi":"10.1371/journal.pone.0320805","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz (THz) spectroscopy is becoming a powerful technique for non-destructive, label-free chemical sensing with applications ranging from medicinal research to security screening. Enhancing THz spectroscopy's sensitivity and selectivity is crucial to maximizing its potential. In this work, we offer a novel optical fiber design, square shape core PCF that is tailored to exploit improved optical features at exterior in the THz region. This analysis suggests that a square shape and three layers with square air apertures for the cladding and core would be ideal. The mathematical analysis is carried out at THz wave dissemination utilizing FEM and boundaries circumstance of the Perfectly Matched Layer. Using the simulation method, the constructed square PCF sensor achieves very high relative sensitivity (94.45%, 94.80%) at 2 THz for two compounds: ethanol (n = 1.354), and benzene (n = 1.36). On the other hand, the low confinement loss (CL) values for the same two compounds at 2 THz are 1.17 ×  10-05 dB/m, and 1.32 ×  1 0-05 dB/m, in that order. We also looked at the potential applications of this special fiber in a variety of fields, including environmental monitoring, chemical sensing, and biomedical diagnostics. The square PCF with square core has hitherto unexplored opportunities for the development of extremely selective and sensitive THz spectroscopic devices with important social consequences in domain of THz perception of chemicals.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0320805"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320805","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) spectroscopy is becoming a powerful technique for non-destructive, label-free chemical sensing with applications ranging from medicinal research to security screening. Enhancing THz spectroscopy's sensitivity and selectivity is crucial to maximizing its potential. In this work, we offer a novel optical fiber design, square shape core PCF that is tailored to exploit improved optical features at exterior in the THz region. This analysis suggests that a square shape and three layers with square air apertures for the cladding and core would be ideal. The mathematical analysis is carried out at THz wave dissemination utilizing FEM and boundaries circumstance of the Perfectly Matched Layer. Using the simulation method, the constructed square PCF sensor achieves very high relative sensitivity (94.45%, 94.80%) at 2 THz for two compounds: ethanol (n = 1.354), and benzene (n = 1.36). On the other hand, the low confinement loss (CL) values for the same two compounds at 2 THz are 1.17 ×  10-05 dB/m, and 1.32 ×  1 0-05 dB/m, in that order. We also looked at the potential applications of this special fiber in a variety of fields, including environmental monitoring, chemical sensing, and biomedical diagnostics. The square PCF with square core has hitherto unexplored opportunities for the development of extremely selective and sensitive THz spectroscopic devices with important social consequences in domain of THz perception of chemicals.

用于太赫兹传感的空芯 PCF:乙醇和苯检测的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信