{"title":"Formulation and evaluation of polymeric nanoparticles to improve in vivo chemotherapeutic efficacy of mangiferin against breast cancer.","authors":"Pratik Chakraborty, Ananya Das, Sharmistha Chatterjee, Aparajita Bairagi, Hiranmoy Bhattacharya, Chiranjib Bhattacharyya, Nabanita Chatterjee, Parames C Sil, Saikat Dewanjee","doi":"10.1007/s00210-025-04068-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mangiferin (Mgf), a naturally occurring polyphenol, can act as an apoptosis inducer for various cancer cells. Thus, it is holding the prospect of being a promising chemotherapeutic agent. However, a discrepancy between the in vitro results and in vivo observations seems to exist that apprehends its potential usefulness. The in vivo chemotherapeutic capacity of Mgf is greatly challenged because of the unfavorable pharmacokinetic credentials. The present study aims to overcome the biopharmaceutical limitations and improve the chemotherapeutic efficacy by incorporating it within nano-scale delivery system. Stable and sphere-shaped Mgf-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (MNPs) were formulated using the nanoprecipitation method and characterized. Further, MNPs were assessed through multiple in vitro and in vivo preclinical evaluations for their chemotherapeutic efficacy, with an ambition to improve the performance in the biological system. Sphere-shaped MNPs exhibited satisfactory drug loading and release profile. The Mgf-loaded nanoformulation also exhibited better cytotoxic potential against breast cancer cells compared to native Mgf owing to its better penetrability into cancer cells. MNPs were also found to confer superior in vivo chemotherapeutic efficacy in breast cancer-bearing mice evidenced by the reduction of tumor load. Improved anti-cancer potential of MNPs over free Mgf was also established through different bioassays. Moreover, the nanoparticles did not confer systemic toxicity to levels of concern. To conclude, the current study pleads for MNPs as a safe and efficacious tool in the fight against breast cancer for futuristic translations.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04068-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Mangiferin (Mgf), a naturally occurring polyphenol, can act as an apoptosis inducer for various cancer cells. Thus, it is holding the prospect of being a promising chemotherapeutic agent. However, a discrepancy between the in vitro results and in vivo observations seems to exist that apprehends its potential usefulness. The in vivo chemotherapeutic capacity of Mgf is greatly challenged because of the unfavorable pharmacokinetic credentials. The present study aims to overcome the biopharmaceutical limitations and improve the chemotherapeutic efficacy by incorporating it within nano-scale delivery system. Stable and sphere-shaped Mgf-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (MNPs) were formulated using the nanoprecipitation method and characterized. Further, MNPs were assessed through multiple in vitro and in vivo preclinical evaluations for their chemotherapeutic efficacy, with an ambition to improve the performance in the biological system. Sphere-shaped MNPs exhibited satisfactory drug loading and release profile. The Mgf-loaded nanoformulation also exhibited better cytotoxic potential against breast cancer cells compared to native Mgf owing to its better penetrability into cancer cells. MNPs were also found to confer superior in vivo chemotherapeutic efficacy in breast cancer-bearing mice evidenced by the reduction of tumor load. Improved anti-cancer potential of MNPs over free Mgf was also established through different bioassays. Moreover, the nanoparticles did not confer systemic toxicity to levels of concern. To conclude, the current study pleads for MNPs as a safe and efficacious tool in the fight against breast cancer for futuristic translations.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.