Healthcare resource utilization for the management of neonatal head shape deformities: a propensity-matched analysis of AI-assisted and conventional approaches.

IF 2.1 3区 医学 Q3 CLINICAL NEUROLOGY
Jimin Shin, Gabrielle Caron, Petronella Stoltz, Jonathan E Martin, David S Hersh, Markus J Bookland
{"title":"Healthcare resource utilization for the management of neonatal head shape deformities: a propensity-matched analysis of AI-assisted and conventional approaches.","authors":"Jimin Shin, Gabrielle Caron, Petronella Stoltz, Jonathan E Martin, David S Hersh, Markus J Bookland","doi":"10.3171/2024.12.PEDS24429","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Overuse of radiography studies and underuse of conservative therapies for cranial deformities in neonates is a known inefficiency in pediatric craniofacial healthcare. This study sought to establish whether the introduction of artificial intelligence (AI)-generated craniometrics and craniometric interpretations into craniofacial clinical workflow improved resource utilization patterns in the initial evaluation and management of neonatal cranial deformities.</p><p><strong>Methods: </strong>A retrospective chart review of pediatric patients referred for head shape concerns between January 2019 and June 2023 was conducted. Patient demographics, final encounter diagnosis, review of an AI analysis, and provider orders were documented. Patients were divided based on whether an AI cranial deformity analysis was documented as reviewed during the index evaluation, then both groups were propensity matched. Rates of index-encounter radiology studies, physical therapy (PT), orthotic therapy, and craniofacial specialist follow-up evaluations were compared using logistic regression and ANOVA analyses.</p><p><strong>Results: </strong>One thousand patient charts were reviewed (663 conventional encounters, 337 AI-assisted encounters). One-to-one propensity matching was performed between these groups. AI models were significantly more likely to be reviewed during telemedicine encounters and advanced practice provider (APP) visits (54.8% telemedicine vs 11.4% in-person, p < 0.0001; 12.3% physician vs 44.4% APP, p < 0.0001). All AI diagnoses of craniosynostosis versus benign deformities were congruent with final diagnoses. AI model review was associated with a significant increase in the use of orthotic therapies for neonatal cranial deformities (31.5% vs 38.6%, p = 0.0132) but not PT or specialist follow-up evaluations. Radiology ordering rates did not correlate with AI-interpreted data review.</p><p><strong>Conclusions: </strong>As neurosurgeons and pediatricians continue to work to limit neonatal radiation exposure and contain healthcare costs, AI-assisted clinical care could be a cheap and easily scalable diagnostic adjunct for reducing reliance on radiography and encouraging adherence to established clinical guidelines. In practice, however, providers appear to default to preexisting diagnostic biases and underweight AI-generated data and interpretations, ultimately negating any potential advantages offered by AI. AI engineers and specialty leadership should prioritize provider education and user interface optimization to improve future adoption of validated AI diagnostic tools.</p>","PeriodicalId":16549,"journal":{"name":"Journal of neurosurgery. Pediatrics","volume":" ","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery. Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.12.PEDS24429","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Overuse of radiography studies and underuse of conservative therapies for cranial deformities in neonates is a known inefficiency in pediatric craniofacial healthcare. This study sought to establish whether the introduction of artificial intelligence (AI)-generated craniometrics and craniometric interpretations into craniofacial clinical workflow improved resource utilization patterns in the initial evaluation and management of neonatal cranial deformities.

Methods: A retrospective chart review of pediatric patients referred for head shape concerns between January 2019 and June 2023 was conducted. Patient demographics, final encounter diagnosis, review of an AI analysis, and provider orders were documented. Patients were divided based on whether an AI cranial deformity analysis was documented as reviewed during the index evaluation, then both groups were propensity matched. Rates of index-encounter radiology studies, physical therapy (PT), orthotic therapy, and craniofacial specialist follow-up evaluations were compared using logistic regression and ANOVA analyses.

Results: One thousand patient charts were reviewed (663 conventional encounters, 337 AI-assisted encounters). One-to-one propensity matching was performed between these groups. AI models were significantly more likely to be reviewed during telemedicine encounters and advanced practice provider (APP) visits (54.8% telemedicine vs 11.4% in-person, p < 0.0001; 12.3% physician vs 44.4% APP, p < 0.0001). All AI diagnoses of craniosynostosis versus benign deformities were congruent with final diagnoses. AI model review was associated with a significant increase in the use of orthotic therapies for neonatal cranial deformities (31.5% vs 38.6%, p = 0.0132) but not PT or specialist follow-up evaluations. Radiology ordering rates did not correlate with AI-interpreted data review.

Conclusions: As neurosurgeons and pediatricians continue to work to limit neonatal radiation exposure and contain healthcare costs, AI-assisted clinical care could be a cheap and easily scalable diagnostic adjunct for reducing reliance on radiography and encouraging adherence to established clinical guidelines. In practice, however, providers appear to default to preexisting diagnostic biases and underweight AI-generated data and interpretations, ultimately negating any potential advantages offered by AI. AI engineers and specialty leadership should prioritize provider education and user interface optimization to improve future adoption of validated AI diagnostic tools.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurosurgery. Pediatrics
Journal of neurosurgery. Pediatrics 医学-临床神经学
CiteScore
3.40
自引率
10.50%
发文量
307
审稿时长
2 months
期刊介绍: Information not localiced
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信