Personalized mHealth Intervention (StepAdd) for Increasing Physical Activity in Japanese Patients With Type 2 Diabetes: Secondary Analysis of Social Cognitive Theory Measurements of a Single-Arm Pilot Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES
Kayo Waki, Syunpei Enomoto, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe
{"title":"Personalized mHealth Intervention (StepAdd) for Increasing Physical Activity in Japanese Patients With Type 2 Diabetes: Secondary Analysis of Social Cognitive Theory Measurements of a Single-Arm Pilot Study.","authors":"Kayo Waki, Syunpei Enomoto, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe","doi":"10.2196/60221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A 12-week pilot of the StepAdd mobile health (mHealth) behavior change intervention based on social cognitive theory (SCT) saw an 86.7% increase in mean daily step counts among patients with type 2 diabetes. Due to the lack of exploration of theoretical implications in mHealth intervention studies, there is a need to understand the mechanism underlying the behavioral change to inform the future design of digital therapeutics.</p><p><strong>Objective: </strong>This study aimed to examine the SCT drivers underlying the mean increase in exercise among Japanese patients with type 2 diabetes who participated in the StepAdd intervention.</p><p><strong>Methods: </strong>This is a post hoc analysis of data collected in the single-arm pilot study of the 32 patients who completed the StepAdd intervention. The StepAdd app uses self-mastery and coping strategies to increase self-efficacy and thus increase walking. Self-mastery was measured by the goal completion (GC) rate, which is the percentage of days in which patients met these adapting goals. The use of coping strategies was measured by the strategy implementation (SI) rate, which is the percentage of days in which patients applied their selected coping strategies. We assessed correlations between GC, SI, and self-efficacy to increase walking via linear regression and analyzed relationships via structural equation modeling.</p><p><strong>Results: </strong>We found statistically significant support for the SCT approach, including a correlation coefficient (ρ) of 0.649 between step increase and GC rate (P<.001); a ρ of 0.497 between the coping SI rate and self-efficacy increase (P=.004); a ρ of 0.446 between GC rate and self-mastery increase (P=.01); and a ρ of 0.355 between self-regulation increase and step increase (P=.046), giving us insight into why the behavior intervention succeeded. We also found significant correlations between self-efficacy for barriers and self-efficacy for task-specific behavior (ρ=0.358; P=.04), as well as self-regulation and self-efficacy for task-specific behavior (ρ=0.583; P<.001). However, a cross-lagged panel modeling analysis found no significant evidence that changes in self-efficacy preceded behavior changes in line with SCT.</p><p><strong>Conclusions: </strong>Self-mastery and coping strategies contributed to the walking behavior change in StepAdd, supporting the SCT model of behavior change. Future research is needed to better understand the causal pathways proposed by SCT.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e60221"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A 12-week pilot of the StepAdd mobile health (mHealth) behavior change intervention based on social cognitive theory (SCT) saw an 86.7% increase in mean daily step counts among patients with type 2 diabetes. Due to the lack of exploration of theoretical implications in mHealth intervention studies, there is a need to understand the mechanism underlying the behavioral change to inform the future design of digital therapeutics.

Objective: This study aimed to examine the SCT drivers underlying the mean increase in exercise among Japanese patients with type 2 diabetes who participated in the StepAdd intervention.

Methods: This is a post hoc analysis of data collected in the single-arm pilot study of the 32 patients who completed the StepAdd intervention. The StepAdd app uses self-mastery and coping strategies to increase self-efficacy and thus increase walking. Self-mastery was measured by the goal completion (GC) rate, which is the percentage of days in which patients met these adapting goals. The use of coping strategies was measured by the strategy implementation (SI) rate, which is the percentage of days in which patients applied their selected coping strategies. We assessed correlations between GC, SI, and self-efficacy to increase walking via linear regression and analyzed relationships via structural equation modeling.

Results: We found statistically significant support for the SCT approach, including a correlation coefficient (ρ) of 0.649 between step increase and GC rate (P<.001); a ρ of 0.497 between the coping SI rate and self-efficacy increase (P=.004); a ρ of 0.446 between GC rate and self-mastery increase (P=.01); and a ρ of 0.355 between self-regulation increase and step increase (P=.046), giving us insight into why the behavior intervention succeeded. We also found significant correlations between self-efficacy for barriers and self-efficacy for task-specific behavior (ρ=0.358; P=.04), as well as self-regulation and self-efficacy for task-specific behavior (ρ=0.583; P<.001). However, a cross-lagged panel modeling analysis found no significant evidence that changes in self-efficacy preceded behavior changes in line with SCT.

Conclusions: Self-mastery and coping strategies contributed to the walking behavior change in StepAdd, supporting the SCT model of behavior change. Future research is needed to better understand the causal pathways proposed by SCT.

针对日本 2 型糖尿病患者增加体育锻炼的个性化移动医疗干预 (StepAdd):对单臂试点研究中社会认知理论测量结果的二次分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信