{"title":"Efficient cutting stock optimization strategies for the steel industry.","authors":"Chattriya Jariyavajee, Suthida Fairee, Charoenchai Khompatraporn, Jumpol Polvichai, Booncharoen Sirinaovakul","doi":"10.1371/journal.pone.0319644","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses a cutting stock problem in steel cutting industry by developing a mathematical model in which machine specifications and cutting conditions are constraints. The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. This algorithm combines a newly proposed Wandering Ant Colony Optimization with a brute force method, and uses specific conditions to determine which of these two approaches to be used to obtain the solution. The proposed algorithm can also be applied to other cutting stock problems, such as paper roll cutting, metal rod cutting, and wood plank cutting. The algorithm was applied to real customer orders in a steel manufacturer and showed significant benefits by reducing the number of planners from four to merely one person and decreasing the cutting planning time from six hours to under one hour. Additionally, the algorithm yields an average cost saving of USD 3.95 per ton, or 52.18% of the baseline.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0319644"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0319644","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a cutting stock problem in steel cutting industry by developing a mathematical model in which machine specifications and cutting conditions are constraints. The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. This algorithm combines a newly proposed Wandering Ant Colony Optimization with a brute force method, and uses specific conditions to determine which of these two approaches to be used to obtain the solution. The proposed algorithm can also be applied to other cutting stock problems, such as paper roll cutting, metal rod cutting, and wood plank cutting. The algorithm was applied to real customer orders in a steel manufacturer and showed significant benefits by reducing the number of planners from four to merely one person and decreasing the cutting planning time from six hours to under one hour. Additionally, the algorithm yields an average cost saving of USD 3.95 per ton, or 52.18% of the baseline.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage