Efficient cutting stock optimization strategies for the steel industry.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0319644
Chattriya Jariyavajee, Suthida Fairee, Charoenchai Khompatraporn, Jumpol Polvichai, Booncharoen Sirinaovakul
{"title":"Efficient cutting stock optimization strategies for the steel industry.","authors":"Chattriya Jariyavajee, Suthida Fairee, Charoenchai Khompatraporn, Jumpol Polvichai, Booncharoen Sirinaovakul","doi":"10.1371/journal.pone.0319644","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses a cutting stock problem in steel cutting industry by developing a mathematical model in which machine specifications and cutting conditions are constraints. The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. This algorithm combines a newly proposed Wandering Ant Colony Optimization with a brute force method, and uses specific conditions to determine which of these two approaches to be used to obtain the solution. The proposed algorithm can also be applied to other cutting stock problems, such as paper roll cutting, metal rod cutting, and wood plank cutting. The algorithm was applied to real customer orders in a steel manufacturer and showed significant benefits by reducing the number of planners from four to merely one person and decreasing the cutting planning time from six hours to under one hour. Additionally, the algorithm yields an average cost saving of USD 3.95 per ton, or 52.18% of the baseline.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0319644"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0319644","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses a cutting stock problem in steel cutting industry by developing a mathematical model in which machine specifications and cutting conditions are constraints. The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. This algorithm combines a newly proposed Wandering Ant Colony Optimization with a brute force method, and uses specific conditions to determine which of these two approaches to be used to obtain the solution. The proposed algorithm can also be applied to other cutting stock problems, such as paper roll cutting, metal rod cutting, and wood plank cutting. The algorithm was applied to real customer orders in a steel manufacturer and showed significant benefits by reducing the number of planners from four to merely one person and decreasing the cutting planning time from six hours to under one hour. Additionally, the algorithm yields an average cost saving of USD 3.95 per ton, or 52.18% of the baseline.

钢铁工业的高效切削库存优化战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信