An MRI-compatible system for characterizing supraspinal processing of walking-related foot-sole somatosensory stimulation.

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Hao Yue, Bin Shen, Yishu Chen, Yufeng Zhang, Jiaojiao Lu, Shaobo Li, Brad Manor, Weijie Fu, Junhong Zhou
{"title":"An MRI-compatible system for characterizing supraspinal processing of walking-related foot-sole somatosensory stimulation.","authors":"Hao Yue, Bin Shen, Yishu Chen, Yufeng Zhang, Jiaojiao Lu, Shaobo Li, Brad Manor, Weijie Fu, Junhong Zhou","doi":"10.1109/TNSRE.2025.3555852","DOIUrl":null,"url":null,"abstract":"<p><p>Foot soles are the only part in direct contact with the ground during walking. The mechanoreceptors on foot soles continuously obtain somatosensory information (e.g., ground reaction forces) that is delivered to spinal and supraspinal networks. The timely and accurate supraspinal processing of such information, which can be captured by the activation of the supraspinal regions, is critical to the regulation of walking. However, little is known about supraspinal somatosensory processing related to walking. Characterizing the supraspinal response to walking-related somatosensory inputs using MRI is challenging, because individuals are required to stay motionless during MRI scan. We thus developed a stimulation system that simulates the amplitude and timing of foot-sole pressure changes experienced during each step of overground walking, without inducing significant head motion. In the study to examine its validity and reliability of simulation, seven younger adults completed two trials of eight-meter walking. The temporal changes of foot-sole pressure of each step during walking were recorded using a pressure insole and used to program the motion of the system. The results indicated high validity and reliability of the stimulation (rho=0.94~0.98, p<0.0001). Phantom imaging test revealed that the signal-to-noise ratio of the MR image when the system working was similar to when the system was off, suggesting excellent MRI compatibility. Finally, block-designed test indicated that, compared to rest, multiple supraspinal regions (e.g., postcentral gyrus) were activated (p<0.005) by foot-sole stimulation. This MRI-compatible system provides a novel approach to characterizing the supraspinal sensorimotor control of walking via MRI.</p>","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TNSRE.2025.3555852","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Foot soles are the only part in direct contact with the ground during walking. The mechanoreceptors on foot soles continuously obtain somatosensory information (e.g., ground reaction forces) that is delivered to spinal and supraspinal networks. The timely and accurate supraspinal processing of such information, which can be captured by the activation of the supraspinal regions, is critical to the regulation of walking. However, little is known about supraspinal somatosensory processing related to walking. Characterizing the supraspinal response to walking-related somatosensory inputs using MRI is challenging, because individuals are required to stay motionless during MRI scan. We thus developed a stimulation system that simulates the amplitude and timing of foot-sole pressure changes experienced during each step of overground walking, without inducing significant head motion. In the study to examine its validity and reliability of simulation, seven younger adults completed two trials of eight-meter walking. The temporal changes of foot-sole pressure of each step during walking were recorded using a pressure insole and used to program the motion of the system. The results indicated high validity and reliability of the stimulation (rho=0.94~0.98, p<0.0001). Phantom imaging test revealed that the signal-to-noise ratio of the MR image when the system working was similar to when the system was off, suggesting excellent MRI compatibility. Finally, block-designed test indicated that, compared to rest, multiple supraspinal regions (e.g., postcentral gyrus) were activated (p<0.005) by foot-sole stimulation. This MRI-compatible system provides a novel approach to characterizing the supraspinal sensorimotor control of walking via MRI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信