Emilie Bäumlin, Dominic Andenmatten, Jonas Luginbühl, Aurélien Lalou, Nino Schwaller, Evangelos D Karousis
{"title":"The impact of Coronavirus Nsp1 on host mRNA degradation is independent of its role in translation inhibition.","authors":"Emilie Bäumlin, Dominic Andenmatten, Jonas Luginbühl, Aurélien Lalou, Nino Schwaller, Evangelos D Karousis","doi":"10.1016/j.celrep.2025.115488","DOIUrl":null,"url":null,"abstract":"<p><p>When host cells are infected with coronaviruses, the first viral protein produced is non-structural protein 1 (Nsp1). This protein inhibits host protein synthesis and induces host mRNA degradation to enhance viral proliferation. Despite its critical role, the mechanism by which Nsp1 mediates cellular mRNA degradation remains unclear. In this study, we use cell-free translation to address how host mRNA stability is regulated by Nsp1. We reveal that SARS-CoV-2 Nsp1 binding to the ribosome is enough to trigger mRNA degradation independently of ribosome collisions or active translation. MERS-CoV Nsp1 inhibits translation without triggering degradation, highlighting mechanistic differences between the two Nsp1 counterparts. Nsp1 and viral mRNAs appear to co-evolve, rendering viral mRNAs immune to Nsp1-mediated degradation in SARS-CoV-2, MERS-CoV, and Bat-Hp viruses. By providing insights into the mode of action of Nsp1, our study helps to understand the biology of Nsp1 better and find strategies for therapeutic targeting against coronaviral infections.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115488"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115488","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
When host cells are infected with coronaviruses, the first viral protein produced is non-structural protein 1 (Nsp1). This protein inhibits host protein synthesis and induces host mRNA degradation to enhance viral proliferation. Despite its critical role, the mechanism by which Nsp1 mediates cellular mRNA degradation remains unclear. In this study, we use cell-free translation to address how host mRNA stability is regulated by Nsp1. We reveal that SARS-CoV-2 Nsp1 binding to the ribosome is enough to trigger mRNA degradation independently of ribosome collisions or active translation. MERS-CoV Nsp1 inhibits translation without triggering degradation, highlighting mechanistic differences between the two Nsp1 counterparts. Nsp1 and viral mRNAs appear to co-evolve, rendering viral mRNAs immune to Nsp1-mediated degradation in SARS-CoV-2, MERS-CoV, and Bat-Hp viruses. By providing insights into the mode of action of Nsp1, our study helps to understand the biology of Nsp1 better and find strategies for therapeutic targeting against coronaviral infections.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.