{"title":"Microsampling techniques and patient-centric therapeutic drug monitoring of immunosuppressants.","authors":"Arkadiusz Kocur, Tomasz Pawiński","doi":"10.1080/17576180.2025.2477976","DOIUrl":null,"url":null,"abstract":"<p><p>Immunosuppressive pharmacotherapy after solid organ transplantation (SOT) requires therapeutic drug monitoring (TDM) for therapy individualization. The venous whole blood is still considered as routine matrix for monitoring immunosuppressive drug concentration. On the other hand, as an alternative, capillary blood collected using noninvasive sampling is convergent with a patient-centric approach. Despite their disadvantages regarding sample homogeneity and the hematocrit effect, well-known dried blood spot techniques have shown promising results. Volumetric absorptive microsampling (VAMS) and quantitative dried blood spot (qDBS) have successfully eliminated these unfavorable biased elements. Microsampling can be used in transplant recipients' care, mainly due to long-term therapy under control drug concentrations and the long distance between the place of the patient's residence and the diagnostic laboratory in the transplant center. The study aimed to discuss the clinical consequences of implementing microsampling techniques for TDM of immunosuppressants. Additionally, we have discussed the 'hot topics' in microsampling: home-based self-sampling, adherence to therapy monitoring, and drug concentration conversion to estimated traditional matrices. Finally, based on our experience and current practice, we propose best practices for microsampling implementation from bench to bedside. Microsampling techniques can potentially revolutionise immunosuppressive pharmacotherapy by enabling patient-centric individualisation in various subpopulations, significantly improving post-transplant care.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"413-427"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2477976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Immunosuppressive pharmacotherapy after solid organ transplantation (SOT) requires therapeutic drug monitoring (TDM) for therapy individualization. The venous whole blood is still considered as routine matrix for monitoring immunosuppressive drug concentration. On the other hand, as an alternative, capillary blood collected using noninvasive sampling is convergent with a patient-centric approach. Despite their disadvantages regarding sample homogeneity and the hematocrit effect, well-known dried blood spot techniques have shown promising results. Volumetric absorptive microsampling (VAMS) and quantitative dried blood spot (qDBS) have successfully eliminated these unfavorable biased elements. Microsampling can be used in transplant recipients' care, mainly due to long-term therapy under control drug concentrations and the long distance between the place of the patient's residence and the diagnostic laboratory in the transplant center. The study aimed to discuss the clinical consequences of implementing microsampling techniques for TDM of immunosuppressants. Additionally, we have discussed the 'hot topics' in microsampling: home-based self-sampling, adherence to therapy monitoring, and drug concentration conversion to estimated traditional matrices. Finally, based on our experience and current practice, we propose best practices for microsampling implementation from bench to bedside. Microsampling techniques can potentially revolutionise immunosuppressive pharmacotherapy by enabling patient-centric individualisation in various subpopulations, significantly improving post-transplant care.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.