Esrrg Inhibition Protects Against PM2.5-induced Asthma Aggravation by Reducing Pde3b.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhihua Zhang, Tao Cai, Xin Zhang, Xingbin Li, Xin Wang
{"title":"Esrrg Inhibition Protects Against PM2.5-induced Asthma Aggravation by Reducing Pde3b.","authors":"Zhihua Zhang, Tao Cai, Xin Zhang, Xingbin Li, Xin Wang","doi":"10.1165/rcmb.2024-0461OC","DOIUrl":null,"url":null,"abstract":"<p><p>PM2.5 exposure is closely linked to the exacerbation of asthma. Estrogen related receptor gamma (Esrrg), an orphan nuclear receptor, exerts a crucial role as a transcription factor in various metabolic diseases. Nevertheless, the impacts of Esrrg on PM2.5-triggered asthma aggravation have not been investigated. Herein, ovalbumin (OVA)-induced asthmatic mice were exposed to PM2.5 to establish a mouse model of asthma aggravation by PM2.5. In view of mRNA sequencing, <i>Esrrg</i> was the only member of nuclear receptor superfamily in the up-regulated differentially expressed genes in OVA compared with Naive groups as well as OVA+PM2.5 compared with OVA groups (|log<sub>2</sub> (fold change)|>1 and p<0.05). <i>In vivo</i>, adeno-associated virus carrying <i>Esrrg</i> shRNA (AAV-shEsrrg) was applied to silencing Esrrg. In addition, Esrrg activity was suppressed pharmacologically with an inverse agonist GSK5182. Either AAV-shEsrrg or GSK5182 ameliorated airway inflammation in the PM2.5-aggravated asthmatic mice. <i>In vitro</i>, isolated mouse primary tracheobronchial epithelial cells (MTEC) from mice were identified by detecting cytokeratin 7-positive cells. The treatment of adenovirus vector with shEsrrg or GSK5182 mitigated the cell damage induced by PM2.5. Notably, phosphodiesterase 3B (Pde3b) expression was declined by Esrrg inhibition <i>in vivo</i> and <i>in vitro</i>. Dual luciferase reporter and ChIP-PCR assays showed the binding of Esrrg to the Pde3b promoter. Taken together, these results revealed that Esrrg inhibition alleviated airway inflammation in the PM2.5-deteriorated asthmatic mouse model and prevented PM2.5-driven MTEC injury through binding to the <i>Pde3b</i> promoter, which might contribute to further study the therapy of PM2.5-aggravated asthma.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0461OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PM2.5 exposure is closely linked to the exacerbation of asthma. Estrogen related receptor gamma (Esrrg), an orphan nuclear receptor, exerts a crucial role as a transcription factor in various metabolic diseases. Nevertheless, the impacts of Esrrg on PM2.5-triggered asthma aggravation have not been investigated. Herein, ovalbumin (OVA)-induced asthmatic mice were exposed to PM2.5 to establish a mouse model of asthma aggravation by PM2.5. In view of mRNA sequencing, Esrrg was the only member of nuclear receptor superfamily in the up-regulated differentially expressed genes in OVA compared with Naive groups as well as OVA+PM2.5 compared with OVA groups (|log2 (fold change)|>1 and p<0.05). In vivo, adeno-associated virus carrying Esrrg shRNA (AAV-shEsrrg) was applied to silencing Esrrg. In addition, Esrrg activity was suppressed pharmacologically with an inverse agonist GSK5182. Either AAV-shEsrrg or GSK5182 ameliorated airway inflammation in the PM2.5-aggravated asthmatic mice. In vitro, isolated mouse primary tracheobronchial epithelial cells (MTEC) from mice were identified by detecting cytokeratin 7-positive cells. The treatment of adenovirus vector with shEsrrg or GSK5182 mitigated the cell damage induced by PM2.5. Notably, phosphodiesterase 3B (Pde3b) expression was declined by Esrrg inhibition in vivo and in vitro. Dual luciferase reporter and ChIP-PCR assays showed the binding of Esrrg to the Pde3b promoter. Taken together, these results revealed that Esrrg inhibition alleviated airway inflammation in the PM2.5-deteriorated asthmatic mouse model and prevented PM2.5-driven MTEC injury through binding to the Pde3b promoter, which might contribute to further study the therapy of PM2.5-aggravated asthma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信