Towards Precision Aging Biology: Single-Cell Multi-Omics and Advanced AI-Driven Strategies.

IF 7 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Sijia Xie, Xinwei Luo, Feitong Hong, Yijie Wei, Yuduo Hao, Xueqin Xie, Xiaolong Li, Guangbo Xie, Fuying Dao, Hao Lyu
{"title":"Towards Precision Aging Biology: Single-Cell Multi-Omics and Advanced AI-Driven Strategies.","authors":"Sijia Xie, Xinwei Luo, Feitong Hong, Yijie Wei, Yuduo Hao, Xueqin Xie, Xiaolong Li, Guangbo Xie, Fuying Dao, Hao Lyu","doi":"10.14336/AD.2025.0218","DOIUrl":null,"url":null,"abstract":"<p><p>Individual aging is a complex biological process involving multiple levels, with molecular changes existing in heterogeneity across different cell types and tissues, being regulated by both internal and external factors. Traditional senescence markers, including p16, cell morphological changes, and cell cycle arrest, can only partially reflect the complexity of senescence. Single-cell omics technology facilitates the integration of multi-faceted data, including gene expression profiles, spatial dynamics, chromatin accessibility and metabolic pathways. This comprehensive approach enhances the development of biomarkers, granting us a more profound insight into the heterogeneity inherent within senescent cell populations. In this review, we summarize the application of single cell multi-omics approaches in analyzing senescence mechanisms and potential intervention targets from the perspectives of transcriptomics, epigenetics, metabolomics, and proteomics, explore the potential of developing new senescence markers at the cellular level using machine learning algorithms and artificial intelligence in bioinformatics analysis. Finally, we further discuss the challenges and prospective trajectories within this research domain to provide a more comprehensive perspective on dissecting the regulatory networks of senescence cells.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2025.0218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Individual aging is a complex biological process involving multiple levels, with molecular changes existing in heterogeneity across different cell types and tissues, being regulated by both internal and external factors. Traditional senescence markers, including p16, cell morphological changes, and cell cycle arrest, can only partially reflect the complexity of senescence. Single-cell omics technology facilitates the integration of multi-faceted data, including gene expression profiles, spatial dynamics, chromatin accessibility and metabolic pathways. This comprehensive approach enhances the development of biomarkers, granting us a more profound insight into the heterogeneity inherent within senescent cell populations. In this review, we summarize the application of single cell multi-omics approaches in analyzing senescence mechanisms and potential intervention targets from the perspectives of transcriptomics, epigenetics, metabolomics, and proteomics, explore the potential of developing new senescence markers at the cellular level using machine learning algorithms and artificial intelligence in bioinformatics analysis. Finally, we further discuss the challenges and prospective trajectories within this research domain to provide a more comprehensive perspective on dissecting the regulatory networks of senescence cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信