Mercury Distribution and Speciation Along the U.S. GEOTRACES GP15 Pacific Meridional Transect

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Lindsay D. Starr, Yipeng He, Robert P. Mason, Chad R. Hammerschmidt, Silvia E. Newell, Carl H. Lamborg
{"title":"Mercury Distribution and Speciation Along the U.S. GEOTRACES GP15 Pacific Meridional Transect","authors":"Lindsay D. Starr,&nbsp;Yipeng He,&nbsp;Robert P. Mason,&nbsp;Chad R. Hammerschmidt,&nbsp;Silvia E. Newell,&nbsp;Carl H. Lamborg","doi":"10.1029/2024JC021672","DOIUrl":null,"url":null,"abstract":"<p>Mercury (Hg) is a bioaccumulative neurotoxin that can concentrate to potentially harmful levels in higher levels of marine food webs following conversion to methylmercury (MeHg). This is of public health concern as seafood is a main protein source for many in the Pacific region. To better understand Hg partitioning and transformations in the Pacific Ocean, Hg species and phases were measured along a meridional section from Alaska to Tahiti in 2018. This allowed the description of Hg concentrations and speciation under a variety of biogeochemical conditions such as the Alaskan shelf, the oligotrophic North Pacific gyre, and near the hydrothermally active Loihi seamount. Filtered HgT concentrations were elevated below 1,000 m near the Loihi Seamount with an average concentration of 1.45 pM, possibly indicating enrichment from hydrothermal venting. Filtered MeHg concentrations were notably higher at depth at the equator and generally lower south of the equator. Total Hg in suspended particles was greatest in the upper 1,000 m near the Alaskan Shelf and decreased in concentration southward. Suspended particle MeHg was greatest in the surface ocean in the upper 300 m near the Intertropical Convergence Zone (ITCZ). For both HgT and MeHg, particle-associated concentrations appear to be related to organic fraction, and concentrations decreased southward. In general, all measured Hg species had greater concentrations in the northern than southern Pacific Ocean consistent with prior measurements.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021672","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury (Hg) is a bioaccumulative neurotoxin that can concentrate to potentially harmful levels in higher levels of marine food webs following conversion to methylmercury (MeHg). This is of public health concern as seafood is a main protein source for many in the Pacific region. To better understand Hg partitioning and transformations in the Pacific Ocean, Hg species and phases were measured along a meridional section from Alaska to Tahiti in 2018. This allowed the description of Hg concentrations and speciation under a variety of biogeochemical conditions such as the Alaskan shelf, the oligotrophic North Pacific gyre, and near the hydrothermally active Loihi seamount. Filtered HgT concentrations were elevated below 1,000 m near the Loihi Seamount with an average concentration of 1.45 pM, possibly indicating enrichment from hydrothermal venting. Filtered MeHg concentrations were notably higher at depth at the equator and generally lower south of the equator. Total Hg in suspended particles was greatest in the upper 1,000 m near the Alaskan Shelf and decreased in concentration southward. Suspended particle MeHg was greatest in the surface ocean in the upper 300 m near the Intertropical Convergence Zone (ITCZ). For both HgT and MeHg, particle-associated concentrations appear to be related to organic fraction, and concentrations decreased southward. In general, all measured Hg species had greater concentrations in the northern than southern Pacific Ocean consistent with prior measurements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信