Internal Gas Injection into Ladle Shroud and Improvement in Tundish Hydrodynamic Performance

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Abhinav Maurya, Prince K. Singh
{"title":"Internal Gas Injection into Ladle Shroud and Improvement in Tundish Hydrodynamic Performance","authors":"Abhinav Maurya,&nbsp;Prince K. Singh","doi":"10.1002/srin.202400707","DOIUrl":null,"url":null,"abstract":"<p>In this article, two-phase experimental and numerical investigations are performed to study the effect of inert gas injection to ladle shroud on the hydrodynamic performance of tundish. It is widely known that the flow of molten steel through a shroud, with or without inert gas injection, can influence the flow behavior in the tundish and, consequently, the hydrodynamic performance. However, large throughput rates may promote refractory wear, slag entrainment, and large tundish eye, which are known to seriously impair steel cleanliness, implying a severe need for optimization of the inert gas injection rate into the ladle shroud. In this study, two distinct reduced scale slab-casting tundishes (from different plants) with scale factors of 0.35 and 0.40 fitted with various flow modifiers are considered. Experiments are performed considering gas-to-liquid loading ratios of 10, 20, and 30%. An improved tundish hydrodynamic performance is observed during the experiments, which is validated with numerical modeling results using ANSYS Fluent 2021R1. Although gas injection to the shroud certainly enhances the hydrodynamic performance of tundishes, the effect fades away beyond 20% of the gas-to-liquid loading ratio, regardless of the tundish design, capacity, and different flow modifiers used.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400707","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, two-phase experimental and numerical investigations are performed to study the effect of inert gas injection to ladle shroud on the hydrodynamic performance of tundish. It is widely known that the flow of molten steel through a shroud, with or without inert gas injection, can influence the flow behavior in the tundish and, consequently, the hydrodynamic performance. However, large throughput rates may promote refractory wear, slag entrainment, and large tundish eye, which are known to seriously impair steel cleanliness, implying a severe need for optimization of the inert gas injection rate into the ladle shroud. In this study, two distinct reduced scale slab-casting tundishes (from different plants) with scale factors of 0.35 and 0.40 fitted with various flow modifiers are considered. Experiments are performed considering gas-to-liquid loading ratios of 10, 20, and 30%. An improved tundish hydrodynamic performance is observed during the experiments, which is validated with numerical modeling results using ANSYS Fluent 2021R1. Although gas injection to the shroud certainly enhances the hydrodynamic performance of tundishes, the effect fades away beyond 20% of the gas-to-liquid loading ratio, regardless of the tundish design, capacity, and different flow modifiers used.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信