Liwei Zhang , Richard J. Lewis , Joseph Brehm , Wencong Liu , David J. Morgan , Thomas E. Davies , Yong Wang , Graham J. Hutchings
{"title":"Chemo-enzymatic phenol polymerisation via in-situ H2O2 synthesis","authors":"Liwei Zhang , Richard J. Lewis , Joseph Brehm , Wencong Liu , David J. Morgan , Thomas E. Davies , Yong Wang , Graham J. Hutchings","doi":"10.1016/j.cattod.2025.115292","DOIUrl":null,"url":null,"abstract":"<div><div>Within this contribution, the combination of supported AuPd nanoalloys with horseradish peroxidase is demonstrated to offer high efficacy towards the one-pot oxidative polymerisation of the model wastewater contaminant phenol, via the chemo-catalytic supply of in-situ generated H<sub>2</sub>O<sub>2</sub><sub>.</sub> Notably, the utilisation of AuPd alloyed formulations offered considerably improved cascade efficiencies, compared to that observed over monometallic analogues, with the optimal 0.5%Au-0.5%Pd/TiO<sub>2</sub> catalyst achieving total conversion of phenol within 15 minutes when used in conjunction with the enzyme. Importantly, the in-situ chemo-enzymatic system was shown to offer good stability over successive reactions, and outperforms analogous approaches reliant on the use of preformed H<sub>2</sub>O<sub>2</sub>, while also avoiding the proprietary stabilising agents present in the commercial oxidant.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"454 ","pages":"Article 115292"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001105","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Within this contribution, the combination of supported AuPd nanoalloys with horseradish peroxidase is demonstrated to offer high efficacy towards the one-pot oxidative polymerisation of the model wastewater contaminant phenol, via the chemo-catalytic supply of in-situ generated H2O2. Notably, the utilisation of AuPd alloyed formulations offered considerably improved cascade efficiencies, compared to that observed over monometallic analogues, with the optimal 0.5%Au-0.5%Pd/TiO2 catalyst achieving total conversion of phenol within 15 minutes when used in conjunction with the enzyme. Importantly, the in-situ chemo-enzymatic system was shown to offer good stability over successive reactions, and outperforms analogous approaches reliant on the use of preformed H2O2, while also avoiding the proprietary stabilising agents present in the commercial oxidant.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.