Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hayk H. Nersisyan , Junmo Jeong , Hoyoung Suh , Jong Hyeon Lee
{"title":"Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis","authors":"Hayk H. Nersisyan ,&nbsp;Junmo Jeong ,&nbsp;Hoyoung Suh ,&nbsp;Jong Hyeon Lee","doi":"10.1016/j.carbon.2025.120268","DOIUrl":null,"url":null,"abstract":"<div><div>A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO<sub>3</sub> is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m<sup>2</sup>/g near the combustion boundary at <em>k</em> = 8 is achieved. When tested as support for Mo<sub>2</sub>C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120268"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO3 is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m2/g near the combustion boundary at k = 8 is achieved. When tested as support for Mo2C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.

Abstract Image

我们开发了一种通过镁热还原 CaCO3 合成石墨化空心碳纳米管(G-HCNC)的直接、节能和可扩展的燃烧合成(CS)方法。通过控制合成温度,我们有效地调节了自模板氧化镁纳米立方体的尺寸,从而影响了在氧化镁表面形成的空心碳纳米立方体的尺寸和表面积。在我们正在进行的实验中,G-HCNC 的边缘尺寸从 100 纳米到 500 纳米不等,厚度为 15-50 纳米。值得注意的是,在 k = 8 时,燃烧边界附近的比表面积高达 977.5 m2/g。在作为 Mo2C 电催化剂的支持物进行测试时,G-HCNC 在氢评估反应(HER)中表现出较低的过电位(120 mV)。此外,当负载 10% 的 Ag 时,G-HCNC 在 KOH 电解质中表现出卓越的比容量(428.9 F/g)。这项研究成果有望在储能应用中产生由石墨化碳层包裹的各种复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信