Courtney M. Holdaway , Kelly-Ann Leonard , Randal Nelson , Jelske van der Veen , Chinmayee Das , Russell Watts , Robin D. Clugston , Richard Lehner , Rene L. Jacobs
{"title":"Alterations in phosphatidylethanolamine metabolism impacts hepatocellular lipid storage, energy homeostasis, and proliferation","authors":"Courtney M. Holdaway , Kelly-Ann Leonard , Randal Nelson , Jelske van der Veen , Chinmayee Das , Russell Watts , Robin D. Clugston , Richard Lehner , Rene L. Jacobs","doi":"10.1016/j.bbalip.2025.159608","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic membranes and is involved in several cellular processes. An important pathway for <em>de novo</em> PE synthesis is the Kennedy Pathway. The rate limiting enzyme in the pathway, CTP:phosphoethanolamine cytidyltransferase, catalyzes the synthesis of CDP-ethanolamine from phosphoethanolamine (pEtn) and CTP. Ethanolamine phosphate phospholyase (ETNPPL) has the potential to breakdown pEtn by catabolizing it to form acetaldehyde, ammonium, and inorganic phosphate. Research on this enzyme is limited and it is unclear how its activity affects PE synthesis; therefore, an investigation into ETNPPL's biological effects is required.</div><div>ETNPPL was expressed in human hepatoma cell line (Huh7) by stable transfection, allowing for long-term expression in cells without ETNPPL. We show that ETNPPL reduces cellular pEtn synthesized from ethanolamine, which decreased synthesis of PE and an increased PC:PE ratio, which has been shown to be associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and impaired mitochondrial function. Experiments conducted show increased neutral lipid storage accompanied by decreased ATP production and oxygen consumption; however, no differences in triglyceride secretion were seen, although ApoB100 secretion was reduced. Huh7 cells expressing ETNPPL proliferate at a slower rate than control and have increased mRNA expression of <em>p53</em> and tumor suppressor genes (<em>CDKN1A, BBC3, BAX, BRCA1)</em>, implicating ETNPPL in cell proliferation, cancer development and/or tumor progression. Overall, ETNPPL rewires hepatic lipid metabolism, altering several processes including increasing lipid storage and decreasing proliferation. The impacts observed in this study may create a link between hepatic ETNPPL expression and MASLD/HCC pathophysiology.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 4","pages":"Article 159608"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000162","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic membranes and is involved in several cellular processes. An important pathway for de novo PE synthesis is the Kennedy Pathway. The rate limiting enzyme in the pathway, CTP:phosphoethanolamine cytidyltransferase, catalyzes the synthesis of CDP-ethanolamine from phosphoethanolamine (pEtn) and CTP. Ethanolamine phosphate phospholyase (ETNPPL) has the potential to breakdown pEtn by catabolizing it to form acetaldehyde, ammonium, and inorganic phosphate. Research on this enzyme is limited and it is unclear how its activity affects PE synthesis; therefore, an investigation into ETNPPL's biological effects is required.
ETNPPL was expressed in human hepatoma cell line (Huh7) by stable transfection, allowing for long-term expression in cells without ETNPPL. We show that ETNPPL reduces cellular pEtn synthesized from ethanolamine, which decreased synthesis of PE and an increased PC:PE ratio, which has been shown to be associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and impaired mitochondrial function. Experiments conducted show increased neutral lipid storage accompanied by decreased ATP production and oxygen consumption; however, no differences in triglyceride secretion were seen, although ApoB100 secretion was reduced. Huh7 cells expressing ETNPPL proliferate at a slower rate than control and have increased mRNA expression of p53 and tumor suppressor genes (CDKN1A, BBC3, BAX, BRCA1), implicating ETNPPL in cell proliferation, cancer development and/or tumor progression. Overall, ETNPPL rewires hepatic lipid metabolism, altering several processes including increasing lipid storage and decreasing proliferation. The impacts observed in this study may create a link between hepatic ETNPPL expression and MASLD/HCC pathophysiology.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.