In silico drug repurposing for potential HPV-induced skin wart treatment − A comparative transcriptome analysis

IF 3.5 Q3 Biochemistry, Genetics and Molecular Biology
Navid Kashani , Amir Sabbaghian , Khadijeh Ahmadi , Mahdi Aalikhani
{"title":"In silico drug repurposing for potential HPV-induced skin wart treatment − A comparative transcriptome analysis","authors":"Navid Kashani ,&nbsp;Amir Sabbaghian ,&nbsp;Khadijeh Ahmadi ,&nbsp;Mahdi Aalikhani","doi":"10.1016/j.jgeb.2025.100485","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Warts are dermal disorders resulting from HPV infection and can be transmitted by direct contact. Existing treatment approaches, such as topical treatment with salicylate, have low efficiency and demonstrate side effects. Thus, the discovery of potent drug treatments for skin warts is necessary. Here we propose the use of alternative medications for the possible treatment of skin warts with the help of comparative transcriptome analysis and drug repurposing approaches.</div></div><div><h3>Methods</h3><div>Gene expression datasets related to HPV-induced warts and cervical cancer were extracted from the GEO database. Differentially expressed genes (DEGs) were identified using DESeq2 in the Galaxy database. Upregulated DEGs were assessed for druggability using the DGIdb tool. Gene ontology and enrichment analysis were performed to investigate the characteristics of druggable DEGs. A molecular docking virtual screening was conducted using PyRx software to identify potential therapeutic targets for skin warts. The interactions between selected drug candidates and the target protein were analyzed using the BIOVIA Discovery Studio. The physicochemical characteristics of potential pharmaceuticals were evaluated using the SwissADME database. Finally, the molecular dynamics (MD) simulation was performed to validate the stability and dynamic behavior of drug-protein interactions.</div></div><div><h3>Results</h3><div>Based on the findings from gene expression profiling, Integrin Alpha-X (ITGAX, CD11c) has been identified as a candidate protein that is significantly upregulated in individuals afflicted with skin warts. Integrin Alpha-X plays a crucial role in mediating intercellular interactions during inflammatory processes and notably enhances the adhesion and chemotactic activity of monocytes. Through molecular docking, MD, and physicochemical analyses, it has been demonstrated that dihydroergotamine effectively inhibits the ITGAX protein, suggesting its potential as a therapeutic agent for the management of skin warts.</div></div><div><h3>Conclusion</h3><div>Dihydroergotamine can be repurposed as a potential drug in the treatment of skin warts by targeting Integrin Alpha-X protein.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"23 2","pages":"Article 100485"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X25000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Warts are dermal disorders resulting from HPV infection and can be transmitted by direct contact. Existing treatment approaches, such as topical treatment with salicylate, have low efficiency and demonstrate side effects. Thus, the discovery of potent drug treatments for skin warts is necessary. Here we propose the use of alternative medications for the possible treatment of skin warts with the help of comparative transcriptome analysis and drug repurposing approaches.

Methods

Gene expression datasets related to HPV-induced warts and cervical cancer were extracted from the GEO database. Differentially expressed genes (DEGs) were identified using DESeq2 in the Galaxy database. Upregulated DEGs were assessed for druggability using the DGIdb tool. Gene ontology and enrichment analysis were performed to investigate the characteristics of druggable DEGs. A molecular docking virtual screening was conducted using PyRx software to identify potential therapeutic targets for skin warts. The interactions between selected drug candidates and the target protein were analyzed using the BIOVIA Discovery Studio. The physicochemical characteristics of potential pharmaceuticals were evaluated using the SwissADME database. Finally, the molecular dynamics (MD) simulation was performed to validate the stability and dynamic behavior of drug-protein interactions.

Results

Based on the findings from gene expression profiling, Integrin Alpha-X (ITGAX, CD11c) has been identified as a candidate protein that is significantly upregulated in individuals afflicted with skin warts. Integrin Alpha-X plays a crucial role in mediating intercellular interactions during inflammatory processes and notably enhances the adhesion and chemotactic activity of monocytes. Through molecular docking, MD, and physicochemical analyses, it has been demonstrated that dihydroergotamine effectively inhibits the ITGAX protein, suggesting its potential as a therapeutic agent for the management of skin warts.

Conclusion

Dihydroergotamine can be repurposed as a potential drug in the treatment of skin warts by targeting Integrin Alpha-X protein.

Abstract Image

为潜在的人乳头瘤病毒诱导的皮肤疣治疗进行硅学药物再利用--转录组比较分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetic Engineering and Biotechnology
Journal of Genetic Engineering and Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.70
自引率
5.70%
发文量
159
审稿时长
16 weeks
期刊介绍: Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信