Finite-time stabilization of fractional-order neural networks with time-varying delays: A generalized inequality approach and controller design

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Shafiya , N. Padmaja
{"title":"Finite-time stabilization of fractional-order neural networks with time-varying delays: A generalized inequality approach and controller design","authors":"M. Shafiya ,&nbsp;N. Padmaja","doi":"10.1016/j.asoc.2025.113074","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores finite-time stabilization methods for a specific class of neural networks with fractional-order dynamics and time-varying delays. The first contribution involves introducing a generalized inequality, an extension of the existing one, to analyze the finite-time stabilization behavior of the addressed model. This extension has successfully addressed numerous limitations and challenges present in existing works. Additionally, an explicit formula for calculating the finite-time stabilization duration is provided. Subsequently, two types of controllers—delay-independent and delay-dependent feedback controllers—are developed to achieve finite-time stabilization for the neural networks under consideration. The conditions for stability, dependent on both the delay and the order, are formulated as linear matrix inequalities using inequality techniques, Lyapunov stability theory, and the newly proposed finite-time stability inequality. These conditions ensure that the fractional-order neural network model is stabilized in finite-time. The efficacy of the suggested design approach is demonstrated through two numerical case studies.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"175 ","pages":"Article 113074"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625003850","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores finite-time stabilization methods for a specific class of neural networks with fractional-order dynamics and time-varying delays. The first contribution involves introducing a generalized inequality, an extension of the existing one, to analyze the finite-time stabilization behavior of the addressed model. This extension has successfully addressed numerous limitations and challenges present in existing works. Additionally, an explicit formula for calculating the finite-time stabilization duration is provided. Subsequently, two types of controllers—delay-independent and delay-dependent feedback controllers—are developed to achieve finite-time stabilization for the neural networks under consideration. The conditions for stability, dependent on both the delay and the order, are formulated as linear matrix inequalities using inequality techniques, Lyapunov stability theory, and the newly proposed finite-time stability inequality. These conditions ensure that the fractional-order neural network model is stabilized in finite-time. The efficacy of the suggested design approach is demonstrated through two numerical case studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信