Effect of the dielectric barrier discharge plasma on Cu-based catalysts supported on SiO2 for acetylene hydration

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yi Cui, Xiejie Chen, Jiaxuan Gao, Shui Liu, Denghao Wang, Caixia Xu
{"title":"Effect of the dielectric barrier discharge plasma on Cu-based catalysts supported on SiO2 for acetylene hydration","authors":"Yi Cui,&nbsp;Xiejie Chen,&nbsp;Jiaxuan Gao,&nbsp;Shui Liu,&nbsp;Denghao Wang,&nbsp;Caixia Xu","doi":"10.1016/j.mcat.2025.115064","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the catalytic performance of acetylene hydration catalysts remains a formidable challenge in current research. SiO<sub>2</sub> was firstly employed as a support to synthesize Cu-based catalysts by dielectric barrier discharge plasma for the acetylene hydration reaction, achieving an impressive conversion of 95.9 % for acetylene and selectivity of 83.6 % for acetaldehyde within 8 h reaction time. The selectivity exhibits a relatively consistent stability within 30 h of reaction time. According to X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), plasma treatment promotes the interaction between the active component and the support, which can enhance the anti-reduction properties of active copper components. Transmission electron microscopy (TEM) and acetylene temperature-programmed desorption (C<sub>2</sub>H<sub>2</sub>-TPD) reveal that plasma treatment markedly improves the dispersion of Cu species and enhances the acetylene adsorption capacity, thereby leading to an improvement in catalytic performance.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115064"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125002500","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the catalytic performance of acetylene hydration catalysts remains a formidable challenge in current research. SiO2 was firstly employed as a support to synthesize Cu-based catalysts by dielectric barrier discharge plasma for the acetylene hydration reaction, achieving an impressive conversion of 95.9 % for acetylene and selectivity of 83.6 % for acetaldehyde within 8 h reaction time. The selectivity exhibits a relatively consistent stability within 30 h of reaction time. According to X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), plasma treatment promotes the interaction between the active component and the support, which can enhance the anti-reduction properties of active copper components. Transmission electron microscopy (TEM) and acetylene temperature-programmed desorption (C2H2-TPD) reveal that plasma treatment markedly improves the dispersion of Cu species and enhances the acetylene adsorption capacity, thereby leading to an improvement in catalytic performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信