Yanfei Liu , Juan Li , Shengnan Huang , Xiaokai Wu , Shaowen Huang , Dingbo Shu , Chi Zhang , Xiaogang Yin
{"title":"Synthesis, characterization, and application of biodegradable superabsorbent gels based on carboxymethyl chitosan-modified sodium lignosulfonate","authors":"Yanfei Liu , Juan Li , Shengnan Huang , Xiaokai Wu , Shaowen Huang , Dingbo Shu , Chi Zhang , Xiaogang Yin","doi":"10.1016/j.eurpolymj.2025.113905","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel three-dimensional bio-based superabsorbent hydrogel, SL-P(AA-AMPS)/CMCS, was synthesized via freeze-drying using sodium lignosulfonate (SL) with rigid phenylpropane structures as the bio-based framework, carboxymethyl chitosan (CMCS) enriched with hydrophilic groups (–OH, –COOH, and –NH<sub>2</sub>) as the hydrophilic modifier, and acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomers. Polymerization was initiated by ammonium persulfate (AP) and crosslinked with N,N’-methylenebisacrylamide (MB). The hydrogel’s structure, morphology, and absorption properties were systematically characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Results revealed a uniform porous structure with an average pore size of 5.8 μm. Absorption capacities in deionized water and 0.9 % NaCl solution reached 1132.9 g/g and 127.9 g/g, respectively, surpassing commercial diaper fillers (273.3 g/g and 61.5 g/g) and feminine hygiene products (223.5 g/g and 45.8 g/g). Under pressurized conditions (2068 Pa), absorption values remained high at 125.7 g/g (deionized water) and 24.0 g/g (0.9 % NaCl solution). The hydrogel exhibited exceptional water retention, retaining 88.8 % and 85.8 % of absorbed water after 8 h at 40 °C and 60 °C, respectively. Swelling kinetics followed a pseudo-first-order model (R<sup>2</sup> > 0.99), achieving equilibrium within 600 s (deionized water) and 60 s (0.9 % NaCl solution). Biodegradation tests demonstrated a 47.5 % degradation rate in soil after 28 days, significantly exceeding that of non-bio-based P(AA-AMPS) (3.7 %). Application tests highlighted superior absorption capacities for artificial urine (82.4 g/g) and blood (179.2 g/g), outperforming conventional hydrogels by 3.3- and 7-fold, respectively.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"230 ","pages":"Article 113905"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001934","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel three-dimensional bio-based superabsorbent hydrogel, SL-P(AA-AMPS)/CMCS, was synthesized via freeze-drying using sodium lignosulfonate (SL) with rigid phenylpropane structures as the bio-based framework, carboxymethyl chitosan (CMCS) enriched with hydrophilic groups (–OH, –COOH, and –NH2) as the hydrophilic modifier, and acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomers. Polymerization was initiated by ammonium persulfate (AP) and crosslinked with N,N’-methylenebisacrylamide (MB). The hydrogel’s structure, morphology, and absorption properties were systematically characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Results revealed a uniform porous structure with an average pore size of 5.8 μm. Absorption capacities in deionized water and 0.9 % NaCl solution reached 1132.9 g/g and 127.9 g/g, respectively, surpassing commercial diaper fillers (273.3 g/g and 61.5 g/g) and feminine hygiene products (223.5 g/g and 45.8 g/g). Under pressurized conditions (2068 Pa), absorption values remained high at 125.7 g/g (deionized water) and 24.0 g/g (0.9 % NaCl solution). The hydrogel exhibited exceptional water retention, retaining 88.8 % and 85.8 % of absorbed water after 8 h at 40 °C and 60 °C, respectively. Swelling kinetics followed a pseudo-first-order model (R2 > 0.99), achieving equilibrium within 600 s (deionized water) and 60 s (0.9 % NaCl solution). Biodegradation tests demonstrated a 47.5 % degradation rate in soil after 28 days, significantly exceeding that of non-bio-based P(AA-AMPS) (3.7 %). Application tests highlighted superior absorption capacities for artificial urine (82.4 g/g) and blood (179.2 g/g), outperforming conventional hydrogels by 3.3- and 7-fold, respectively.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.