Tuning the sound characteristics of flow-induced noise generated in a refrigeration system

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Weixing Yang , Wenbin Zhang , Jilai Cao , Maoxun Sun
{"title":"Tuning the sound characteristics of flow-induced noise generated in a refrigeration system","authors":"Weixing Yang ,&nbsp;Wenbin Zhang ,&nbsp;Jilai Cao ,&nbsp;Maoxun Sun","doi":"10.1016/j.ijrefrig.2025.03.035","DOIUrl":null,"url":null,"abstract":"<div><div>Refrigeration equipment is extensively utilized in residential, commercial and industrial applications, but the issue of flow-induced noise problems remains a tragic problem. The jet flow noises generated by refrigerants have drawn considerable attentions in noise control engineering to mitigate acoustic instability. The jet flow and phase transition in mufflers can lead to flow separation and vortex shedding, resulting in a substantial decrease in acoustic attenuation performances. In this work, the acoustic attenuation performances of a novel acoustic muffler used at the junction between capillary and evaporator were systematically investigated. The proposed acoustic muffler can weaken the jet flow noise by damping the vortices and flow oscillations with an enhanced design, which exhibits superior attenuation performances with the jet flow Mach Number from 0 to 0.15. Compared to the multi-stage pipes under the identical operating condition, the sound pressure level of the improved acoustic muffler exhibits a reduction of average 10 dBA within the frequency range of 1000 Hz to 4500Hz. The results show outstanding noise-attenuation performance and may inspire the development of highly efficient and broadband acoustic mufflers for weakening the jet flow noise in refrigeration systems.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"175 ","pages":"Pages 1-11"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725001252","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Refrigeration equipment is extensively utilized in residential, commercial and industrial applications, but the issue of flow-induced noise problems remains a tragic problem. The jet flow noises generated by refrigerants have drawn considerable attentions in noise control engineering to mitigate acoustic instability. The jet flow and phase transition in mufflers can lead to flow separation and vortex shedding, resulting in a substantial decrease in acoustic attenuation performances. In this work, the acoustic attenuation performances of a novel acoustic muffler used at the junction between capillary and evaporator were systematically investigated. The proposed acoustic muffler can weaken the jet flow noise by damping the vortices and flow oscillations with an enhanced design, which exhibits superior attenuation performances with the jet flow Mach Number from 0 to 0.15. Compared to the multi-stage pipes under the identical operating condition, the sound pressure level of the improved acoustic muffler exhibits a reduction of average 10 dBA within the frequency range of 1000 Hz to 4500Hz. The results show outstanding noise-attenuation performance and may inspire the development of highly efficient and broadband acoustic mufflers for weakening the jet flow noise in refrigeration systems.
制冷设备广泛应用于住宅、商业和工业领域,但流动引起的噪音问题仍然是一个棘手的问题。制冷剂产生的喷射流噪声在噪声控制工程中引起了相当大的关注,以缓解声学不稳定性。消声器中的喷射流和相变会导致流动分离和涡流脱落,从而导致声学衰减性能大幅下降。在这项工作中,系统地研究了用于毛细管和蒸发器交界处的新型声学消声器的声学衰减性能。所提出的声学消声器可以通过抑制涡流和流动振荡来减弱喷射流噪声,其设计经过改进,在喷射流马赫数为 0 到 0.15 时表现出卓越的衰减性能。与相同工作条件下的多级管道相比,改进型声学消声器的声压级在 1000 Hz 至 4500 Hz 频率范围内平均降低了 10 dBA。研究结果表明,这种消声器具有出色的降噪性能,可用于开发高效宽带消声器,以削弱制冷系统中的喷射流噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信