Stepwise zinc deposition for high-capacity and long-life anode in aqueous zinc-ion batteries

IF 13.1 1区 化学 Q1 Energy
Weili Xie , Kaiyue Zhu , Weikang Jiang , Hanmiao Yang , Weishen Yang
{"title":"Stepwise zinc deposition for high-capacity and long-life anode in aqueous zinc-ion batteries","authors":"Weili Xie ,&nbsp;Kaiyue Zhu ,&nbsp;Weikang Jiang ,&nbsp;Hanmiao Yang ,&nbsp;Weishen Yang","doi":"10.1016/j.jechem.2025.02.059","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable aqueous zinc-ion batteries (AZIBs) are widely studied for energy storage because of their high safety, low cost and high energy/power density. However, the practical application of AZIBs is limited by dendrite formation at the zinc anode under high-depth deposition, which results in reduced cycle life and overall performance. Herein, we propose an effective and scalable stepwise deposition approach that integrates uniform nucleation and dense growth through the construction of ultrathin ZnO nanofiber arrays (ZONAs) on the zinc anode surface, along with the introduction of an anionic surfactant (AS) into the electrolyte. This approach yields a uniform, dense and dendrite-free Zn anode during cycling, maintaining stable cycling for 2100 h under a high deposition depth of 10 mAh cm<sup>−2</sup> at an extremely high current density of 10 mA cm<sup>−2</sup>. Additionally, full cells using MnO<sub>2</sub> cathodes exhibit stable cycling for 6000 cycles at 5 A g<sup>−1</sup>, with a capacity retention of 75%. Furthermore, the pouch-type cell with an area of 90 cm<sup>2</sup> delivers a capacity of 60 mAh and maintains stable cycling for 540 cycles at 200 mA, highlighting its strong potential for scalability.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"106 ","pages":"Pages 427-437"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625002177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable aqueous zinc-ion batteries (AZIBs) are widely studied for energy storage because of their high safety, low cost and high energy/power density. However, the practical application of AZIBs is limited by dendrite formation at the zinc anode under high-depth deposition, which results in reduced cycle life and overall performance. Herein, we propose an effective and scalable stepwise deposition approach that integrates uniform nucleation and dense growth through the construction of ultrathin ZnO nanofiber arrays (ZONAs) on the zinc anode surface, along with the introduction of an anionic surfactant (AS) into the electrolyte. This approach yields a uniform, dense and dendrite-free Zn anode during cycling, maintaining stable cycling for 2100 h under a high deposition depth of 10 mAh cm−2 at an extremely high current density of 10 mA cm−2. Additionally, full cells using MnO2 cathodes exhibit stable cycling for 6000 cycles at 5 A g−1, with a capacity retention of 75%. Furthermore, the pouch-type cell with an area of 90 cm2 delivers a capacity of 60 mAh and maintains stable cycling for 540 cycles at 200 mA, highlighting its strong potential for scalability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信