Assessing microstructure, morphology, and mechanical properties of Al-2Fe-1Ni alloy through correlational characterization analysis

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Jaderson Rodrigo da Silva Leal , Felipe Escher Saldanha , Guilherme Lisboa de Gouveia , José Eduardo Spinelli
{"title":"Assessing microstructure, morphology, and mechanical properties of Al-2Fe-1Ni alloy through correlational characterization analysis","authors":"Jaderson Rodrigo da Silva Leal ,&nbsp;Felipe Escher Saldanha ,&nbsp;Guilherme Lisboa de Gouveia ,&nbsp;José Eduardo Spinelli","doi":"10.1016/j.matchar.2025.114962","DOIUrl":null,"url":null,"abstract":"<div><div>One approach to addressing the growing demand for Al alloys in an environmentally sustainable manner is through recycling. However, the primary challenge involves mitigating the loss of mechanical properties and expanding the application range of scrap-containing alloys, primarily due to the formation of deleterious Fe-rich intermetallic phases. To tackle this issue, various methodologies have been explored, ranging from the less efficient dilution of scrap in primary Al to the use of elements such as Ni that modify these harmful phases, combined with control of solidification thermal parameters. Despite the potential of this approach, there is a notable gap in the literature regarding the formation kinetics of Fe-rich intermetallics under varying thermal conditions and the addition of Ni in Fe-rich Al alloys. This study investigates the Al-2Fe-1Ni alloy solidified at cooling rates of 0.5 K/s and 10.5 K/s using optical microscopy, SEM, XRD, EBSD, XCT, and tensile tests. The findings demonstrate the effectiveness of Ni in suppressing the formation of the primary Al<sub>13</sub>Fe<sub>4</sub> intermetallic phase and promoting microstructures predominantly composed of eutectic cells containing Al + Al<sub>9</sub>FeNi. The Al<sub>9</sub>FeNi fibers within the eutectic cells exhibited morphological variations, with the central segments being more refined and orderly compared to the coarser and less aligned peripheric segments. Furthermore, the microstructural refinement induced by increasing the cooling rate during solidification (from approximately 1 K/s to 8 K/s) resulted in enhanced yield strength (from 88 MPa to 125 MPa) and tensile strength (from 116 MPa to 138 MPa), while maintaining ductility, as evidenced by a consistent fracture strain of approximately 25 %.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"223 ","pages":"Article 114962"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325002517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

One approach to addressing the growing demand for Al alloys in an environmentally sustainable manner is through recycling. However, the primary challenge involves mitigating the loss of mechanical properties and expanding the application range of scrap-containing alloys, primarily due to the formation of deleterious Fe-rich intermetallic phases. To tackle this issue, various methodologies have been explored, ranging from the less efficient dilution of scrap in primary Al to the use of elements such as Ni that modify these harmful phases, combined with control of solidification thermal parameters. Despite the potential of this approach, there is a notable gap in the literature regarding the formation kinetics of Fe-rich intermetallics under varying thermal conditions and the addition of Ni in Fe-rich Al alloys. This study investigates the Al-2Fe-1Ni alloy solidified at cooling rates of 0.5 K/s and 10.5 K/s using optical microscopy, SEM, XRD, EBSD, XCT, and tensile tests. The findings demonstrate the effectiveness of Ni in suppressing the formation of the primary Al13Fe4 intermetallic phase and promoting microstructures predominantly composed of eutectic cells containing Al + Al9FeNi. The Al9FeNi fibers within the eutectic cells exhibited morphological variations, with the central segments being more refined and orderly compared to the coarser and less aligned peripheric segments. Furthermore, the microstructural refinement induced by increasing the cooling rate during solidification (from approximately 1 K/s to 8 K/s) resulted in enhanced yield strength (from 88 MPa to 125 MPa) and tensile strength (from 116 MPa to 138 MPa), while maintaining ductility, as evidenced by a consistent fracture strain of approximately 25 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信