Jinlong Liu , Jiahui Liu , Kang Gao , Iman Mohagheghian , Wei Fan , Jie Yang , Zhangming Wu
{"title":"A bioinspired gradient curved auxetic honeycombs with enhanced energy absorption","authors":"Jinlong Liu , Jiahui Liu , Kang Gao , Iman Mohagheghian , Wei Fan , Jie Yang , Zhangming Wu","doi":"10.1016/j.ijmecsci.2025.110189","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional auxetic honeycombs often exhibit reduced energy absorption capabilities due to global instability arising from shear band formation, significantly limiting their practical applications. To address this limitation, this study presents the Auxetic Arc-Curved Honeycomb with a novel Bioinspired Layering Gradient (BLG-AACH). The innovative gradient design of the BLG-AACH is inspired by the dense exterior and sparse interior characteristics of biological tissues across multiple scales, utilizing fractal self-similar structure to achieve this biological trait. The BLG-AACH facilitates induced deformation in the intermediate layers, thereby preventing overall global buckling and significantly enhancing energy absorption properties. The compressive behavior of the BLG-AACH was investigated through both experimental testing and finite element modeling. The results demonstrate that the BLG-AACH structure maintains a stable concave folding deformation mode and exhibits multi-level energy absorption capabilities. Its specific energy absorption and total energy absorption are 5.81 and 10.74 times greater than those of the homogeneous AACH, respectively, outperforming other layered configurations. Moreover, the BLG-AACH is highly programmable, enabling the adjustment of mechanical properties such as initial stiffness, plateau stress, and specific energy absorption by varying parameters like cell angle and cell wall thickness. Additionally, Genetic Programming-Symbolic Regression (GP-SR) was innovatively employed to derive a compact and scalable formula for calculating the specific energy absorption of the BLG-AACH, achieving an impressive <em>R<sup>2</sup></em> value of 0.99. These findings provide a novel paradigm for enhancing the energy absorption performance and its calculation in auxetic honeycombs.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110189"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002759","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional auxetic honeycombs often exhibit reduced energy absorption capabilities due to global instability arising from shear band formation, significantly limiting their practical applications. To address this limitation, this study presents the Auxetic Arc-Curved Honeycomb with a novel Bioinspired Layering Gradient (BLG-AACH). The innovative gradient design of the BLG-AACH is inspired by the dense exterior and sparse interior characteristics of biological tissues across multiple scales, utilizing fractal self-similar structure to achieve this biological trait. The BLG-AACH facilitates induced deformation in the intermediate layers, thereby preventing overall global buckling and significantly enhancing energy absorption properties. The compressive behavior of the BLG-AACH was investigated through both experimental testing and finite element modeling. The results demonstrate that the BLG-AACH structure maintains a stable concave folding deformation mode and exhibits multi-level energy absorption capabilities. Its specific energy absorption and total energy absorption are 5.81 and 10.74 times greater than those of the homogeneous AACH, respectively, outperforming other layered configurations. Moreover, the BLG-AACH is highly programmable, enabling the adjustment of mechanical properties such as initial stiffness, plateau stress, and specific energy absorption by varying parameters like cell angle and cell wall thickness. Additionally, Genetic Programming-Symbolic Regression (GP-SR) was innovatively employed to derive a compact and scalable formula for calculating the specific energy absorption of the BLG-AACH, achieving an impressive R2 value of 0.99. These findings provide a novel paradigm for enhancing the energy absorption performance and its calculation in auxetic honeycombs.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.