Effects of global Ripk2 genetic deficiency in aged mice following experimental ischemic stroke

IF 1.7 Q3 CLINICAL NEUROLOGY
John Aaron Howell , Jonathan Larochelle , Rachel E. Gunraj , Sofia M. Stansbury , Lei Liu , Changjun Yang , Eduardo Candelario-Jalil
{"title":"Effects of global Ripk2 genetic deficiency in aged mice following experimental ischemic stroke","authors":"John Aaron Howell ,&nbsp;Jonathan Larochelle ,&nbsp;Rachel E. Gunraj ,&nbsp;Sofia M. Stansbury ,&nbsp;Lei Liu ,&nbsp;Changjun Yang ,&nbsp;Eduardo Candelario-Jalil","doi":"10.1016/j.nbas.2025.100135","DOIUrl":null,"url":null,"abstract":"<div><div>Besides the loss of blood and oxygen reaching the ischemic tissue, many secondary effects of ischemic stroke can cause additional tissue damage, including inflammation, oxidative stress, and proteomic disturbances. Receptor-interacting serine/threonine kinase 2 (RIPK2) is an important mediator in the post-stroke inflammatory cascade that responds to signals and molecular patterns released by dead or dying cells in the ischemic area. We hypothesize that RIPK2 signaling worsens injury and neurological recovery post-stroke and that global deletion of <em>Ripk2</em> is protective following ischemic stroke in aged mice. Aged (18–24 months) male mice were subjected to permanent middle cerebral artery occlusion (pMCAO). Vertical grid, weight grip, and open field were conducted at baseline and on days 1, 2, 3, 8, 15, and 22 post-stroke. Cognitive tests (novel object recognition and Y-maze) were performed at baseline and day 28 post-stroke. Infarct size was measured using cresyl violet staining, and reactive gliosis was measured using Iba1 and GFAP staining at day 28 post-stroke. Global deletion of <em>Ripk2</em> (<em>Ripk2<sup>-/-</sup></em>) in aged mice resulted in smaller infarct volume and improved performance on vertical grid and weight grip tests compared to aged wildtype (WT) mice. Additionally, aged <em>Ripk2</em><sup>-/-</sup> mice had less Iba1 staining in the ipsilateral cortex than the aged WT control mice. This study further elucidates the role of RIPK2 signaling in the ischemic cascade and expands our knowledge of RIPK2 in stroke to aged mice. These results support the hypothesis that RIPK2 signaling worsens injury post-stroke and may be an attractive candidate for therapeutic intervention.</div></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"7 ","pages":"Article 100135"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958925000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Besides the loss of blood and oxygen reaching the ischemic tissue, many secondary effects of ischemic stroke can cause additional tissue damage, including inflammation, oxidative stress, and proteomic disturbances. Receptor-interacting serine/threonine kinase 2 (RIPK2) is an important mediator in the post-stroke inflammatory cascade that responds to signals and molecular patterns released by dead or dying cells in the ischemic area. We hypothesize that RIPK2 signaling worsens injury and neurological recovery post-stroke and that global deletion of Ripk2 is protective following ischemic stroke in aged mice. Aged (18–24 months) male mice were subjected to permanent middle cerebral artery occlusion (pMCAO). Vertical grid, weight grip, and open field were conducted at baseline and on days 1, 2, 3, 8, 15, and 22 post-stroke. Cognitive tests (novel object recognition and Y-maze) were performed at baseline and day 28 post-stroke. Infarct size was measured using cresyl violet staining, and reactive gliosis was measured using Iba1 and GFAP staining at day 28 post-stroke. Global deletion of Ripk2 (Ripk2-/-) in aged mice resulted in smaller infarct volume and improved performance on vertical grid and weight grip tests compared to aged wildtype (WT) mice. Additionally, aged Ripk2-/- mice had less Iba1 staining in the ipsilateral cortex than the aged WT control mice. This study further elucidates the role of RIPK2 signaling in the ischemic cascade and expands our knowledge of RIPK2 in stroke to aged mice. These results support the hypothesis that RIPK2 signaling worsens injury post-stroke and may be an attractive candidate for therapeutic intervention.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging brain
Aging brain Neuroscience (General), Geriatrics and Gerontology
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信