Screening and preparation of curcumin nano-formulations combined with dissolving microneedles on the application in the effective treatment of psoriasis

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Peng Xu , Kun Xu , Jiayin Li , Aoxue Liu , Wei Xiao , Lin Sun
{"title":"Screening and preparation of curcumin nano-formulations combined with dissolving microneedles on the application in the effective treatment of psoriasis","authors":"Peng Xu ,&nbsp;Kun Xu ,&nbsp;Jiayin Li ,&nbsp;Aoxue Liu ,&nbsp;Wei Xiao ,&nbsp;Lin Sun","doi":"10.1016/j.ijpharm.2025.125528","DOIUrl":null,"url":null,"abstract":"<div><div>Psoriasis, a prevalent immunoinflammatory skin condition, is characterized by abnormal skin thickening, which complicates traditional topical drug delivery and hinders drug penetration. Our goal is to enhance the efficacy of psoriasis treatment by developing a transdermal drug formulation. Microneedles (MNs) can improve treatment outcomes by increasing the absorption of topical medications through skin penetration. Curcumin (Cur), a natural anti-inflammatory, antioxidant, and immunomodulatory small molecule with water-insoluble properties, shows promise for psoriasis relief. In this research, three Cur nano-formulations (NFs) were screened and prepared using antisolvent and ethanol injection methods, with one being dispersed into hyaluronic acid (HA) dissolving MNs. A transdermal nano-MNs delivery system was constructed using a double-layer centrifugation technique. This co-delivery system overcame Cur’s solubility issues, poor absorption, and instability, allowing targeted and efficient delivery of Cur-NFs to the skin without being hindered by the skin barrier. <em>In vitro</em> studies demonstrated that Cur-NF dissolving MNs possess adequate mechanical properties for skin implantation, exhibit rapid dissolution, and achieve an effective drug release rate of 73 % within 6 h. Pharmacodynamic evaluations demonstrated that the MNs system effectively ameliorated key psoriatic skin manifestations. Notably, MNs treatment significantly reduced the Psoriasis Area and Severity Index (PASI) score from 12.0 ± 0.0 (model group) to 4.7 ± 0.5 (<em>p</em> &lt; 0.05), alongside a marked suppression of pro-inflammatory cytokines, including TNF-α, IL-17, IL-22, and IL-23, compared to untreated psoriatic controls. Therefore, the composite dissolving MNs delivery system loaded with Cur-NFs represents a promising approach for psoriasis treatment.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"675 ","pages":"Article 125528"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325003655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Psoriasis, a prevalent immunoinflammatory skin condition, is characterized by abnormal skin thickening, which complicates traditional topical drug delivery and hinders drug penetration. Our goal is to enhance the efficacy of psoriasis treatment by developing a transdermal drug formulation. Microneedles (MNs) can improve treatment outcomes by increasing the absorption of topical medications through skin penetration. Curcumin (Cur), a natural anti-inflammatory, antioxidant, and immunomodulatory small molecule with water-insoluble properties, shows promise for psoriasis relief. In this research, three Cur nano-formulations (NFs) were screened and prepared using antisolvent and ethanol injection methods, with one being dispersed into hyaluronic acid (HA) dissolving MNs. A transdermal nano-MNs delivery system was constructed using a double-layer centrifugation technique. This co-delivery system overcame Cur’s solubility issues, poor absorption, and instability, allowing targeted and efficient delivery of Cur-NFs to the skin without being hindered by the skin barrier. In vitro studies demonstrated that Cur-NF dissolving MNs possess adequate mechanical properties for skin implantation, exhibit rapid dissolution, and achieve an effective drug release rate of 73 % within 6 h. Pharmacodynamic evaluations demonstrated that the MNs system effectively ameliorated key psoriatic skin manifestations. Notably, MNs treatment significantly reduced the Psoriasis Area and Severity Index (PASI) score from 12.0 ± 0.0 (model group) to 4.7 ± 0.5 (p < 0.05), alongside a marked suppression of pro-inflammatory cytokines, including TNF-α, IL-17, IL-22, and IL-23, compared to untreated psoriatic controls. Therefore, the composite dissolving MNs delivery system loaded with Cur-NFs represents a promising approach for psoriasis treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信