Weak asymptotic analysis approach for first order scalar conservation laws with nonlocal flux

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Eduardo Abreu , Richard De la cruz , Juan Juajibioy , Wanderson Lambert
{"title":"Weak asymptotic analysis approach for first order scalar conservation laws with nonlocal flux","authors":"Eduardo Abreu ,&nbsp;Richard De la cruz ,&nbsp;Juan Juajibioy ,&nbsp;Wanderson Lambert","doi":"10.1016/j.nonrwa.2025.104378","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we expand on the weak asymptotic analysis originally proposed in Abreu et al. (2024) for the investigation of scalar equations and systems of conservation laws, extending it to encompass scalar equations with nonlocal fluxes. Subsequently, we apply this refined methodology to explore a specific class of nonlocal scalar conservation laws <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>+</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>∗</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><mrow><mi>η</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>η</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>η</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ω</mi><mrow><mo>(</mo><mi>⋅</mi><mo>/</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> represents a rescaled asymmetric convolution kernel. Essentially, the extension of the weak asymptotic analysis to nonlocal scalar conservation laws yields a family of approximate solutions that exhibit smoothness in time, local integrability, and essential boundedness in the spatial variable. This notable property facilitates the application of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-compactness arguments, leading to the convergence of a solution family. We further extend the concept of weak asymptotic solutions to a broader class of nonlocal scalar conservation laws by constructing a family of ordinary differential equations, providing a set <span><math><mrow><mo>{</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> of asymptotically approximated solutions. These solutions belong to the space <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and, in an asymptotic sense, adhere to Kruzhkov’s entropy inequalities. These characteristics, coupled with a suitable spatial and temporal modulus of continuity (which is independent of <span><math><mi>ϵ</mi></math></span> but dependent on <span><math><mi>η</mi></math></span>, representing the horizon for capturing multiple scales of interactions in the nonlocal model), enable us to extract a subsequence converging to the weak and weak entropy solution of the nonlocal scalar conservation law <span><span>(1)</span></span>. Furthermore, in scenarios where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> in Eq. <span><span>(1)</span></span>, we illustrate that the approximate solutions converge, in the weak asymptotic sense, to the weak asymptotic solution associated with the corresponding local scalar conservation law counterpart.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104378"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000641","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we expand on the weak asymptotic analysis originally proposed in Abreu et al. (2024) for the investigation of scalar equations and systems of conservation laws, extending it to encompass scalar equations with nonlocal fluxes. Subsequently, we apply this refined methodology to explore a specific class of nonlocal scalar conservation laws tρη+xρηf(ρη)V(ωηρη)=0, where η>0 and ωη()=η1ω(/η) represents a rescaled asymmetric convolution kernel. Essentially, the extension of the weak asymptotic analysis to nonlocal scalar conservation laws yields a family of approximate solutions that exhibit smoothness in time, local integrability, and essential boundedness in the spatial variable. This notable property facilitates the application of Lp-compactness arguments, leading to the convergence of a solution family. We further extend the concept of weak asymptotic solutions to a broader class of nonlocal scalar conservation laws by constructing a family of ordinary differential equations, providing a set {ρη(,ϵ)} of asymptotically approximated solutions. These solutions belong to the space L1(R)L(R) and, in an asymptotic sense, adhere to Kruzhkov’s entropy inequalities. These characteristics, coupled with a suitable spatial and temporal modulus of continuity (which is independent of ϵ but dependent on η, representing the horizon for capturing multiple scales of interactions in the nonlocal model), enable us to extract a subsequence converging to the weak and weak entropy solution of the nonlocal scalar conservation law (1). Furthermore, in scenarios where f(ρ)=1 in Eq. (1), we illustrate that the approximate solutions converge, in the weak asymptotic sense, to the weak asymptotic solution associated with the corresponding local scalar conservation law counterpart.
具有非局部通量的一阶标量守恒律的弱渐近分析方法
在这项工作中,我们扩展了Abreu等人(2024)最初提出的用于研究标量方程和守恒律系统的弱渐近分析,将其扩展到包含非局部通量的标量方程。随后,我们应用这种改进的方法来探索一类特定的非局部标量守恒定律∂trρ η+∂xρηf(ρη)V(ωη∗ρη)=0,其中η>;0和ωη(⋅)=η−1ω(⋅/η)表示一个重新标度的非对称卷积核。从本质上讲,将弱渐近分析推广到非局部标量守恒律,可以得到一组近似解,这些解在时间上具有光滑性,在空间变量上具有局部可积性和本质有界性。这一显著性质促进了lp紧性论证的应用,导致解族的收敛性。通过构造一类常微分方程,我们进一步将弱渐近解的概念推广到更广泛的非局部标量守恒律,提供渐近逼近解的集{ρη(⋅,λ)}。这些解属于空间L1(R)∩L∞(R),并且在渐近意义上符合Kruzhkov熵不等式。这些特征,加上适当的空间和时间连续性模量(独立于λ,但依赖于η,代表捕获非局部模型中相互作用的多个尺度的视界),使我们能够提取收敛于非局部标量守恒律的弱和弱熵解的子序列(1)。此外,在Eq.(1)中f(ρ)=1的情况下,我们说明近似解收敛,在弱渐近意义上,弱渐近解与相应的局部标量守恒律对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信