Conjugated microporous polymer containing pyrene and Dibenzo[g,p]chrysene moieties as a luminescent powerhouse for multi-target sensing and environmental safety
Mohamed Gamal Mohamed , Abdul Basit , Manivannan Madhu , K. Aravinthkumar , Awad I. Said , Devaraj Manoj , Wei-Lung Tseng , Shiao-Wei Kuo
{"title":"Conjugated microporous polymer containing pyrene and Dibenzo[g,p]chrysene moieties as a luminescent powerhouse for multi-target sensing and environmental safety","authors":"Mohamed Gamal Mohamed , Abdul Basit , Manivannan Madhu , K. Aravinthkumar , Awad I. Said , Devaraj Manoj , Wei-Lung Tseng , Shiao-Wei Kuo","doi":"10.1016/j.micromeso.2025.113620","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugated microporous polymers (CMPs) have emerged as highly versatile materials, garnering significant attention in recent years due to their unique structural and functional properties. This study presents the development and synthesis of a CMP based on Py-TBNBZ, achieved via a well-established [4 + 4] Schiff base reaction. The reaction involves two primary building blocks: 4,4′,4″,4‴-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (PyBZ-4CHO) and 4,4′,4″,4‴-(dibenzo[g,p]chrysene-2,7,10,15-tetrayl)tetraaniline (TBNBZ-4NH<sub>2</sub>). The structural and morphological characteristics of the synthesized Py-TBNBZ CMP material were systematically analyzed using advanced experimental techniques, confirming the successful formation of a robust framework. The Py-TBNBZ CMP prepared in this study showed a BET surface area (S<sub>BET</sub>) of 497 m<sup>2</sup> g<sup>−1</sup>. Thermal analysis indicated a decomposition temperature (<em>T</em><sub><em>d10</em></sub>) of 476 °C and a notable char yield of 74 wt%, as confirmed through BET and TGA measurements. One of the most notable features of the Py-TBNBZ CMP is its strong fluorescence, which enabled its application in chemical sensing. The material exhibited exceptional sensitivity and selectivity, allowing for the detection of K<sup>+</sup> and Fe<sup>2+</sup> ions and precise pH monitoring over a broad pH range (pH 2–10). The underlying sensing mechanisms were investigated and elucidated. Additionally, the Py-TBNBZ CMP demonstrated remarkable adsorption capabilities for hazardous gas vapors, including ammonia (NH<sub>3</sub>) and hydrogen chloride (HCl), underscoring its potential for environmental remediation. The flexibility of the Py-TBNBZ CMP distinguishes it from other CMPs and porous materials, enabling superior performance, enhanced applicability, and improved operational efficiency. This work highlights the advanced capabilities of Py-TBNBZ CMP and contributes to the ongoing development of innovative materials for adsorption, environmental protection, and next-generation sensing technologies.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"391 ","pages":"Article 113620"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001349","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugated microporous polymers (CMPs) have emerged as highly versatile materials, garnering significant attention in recent years due to their unique structural and functional properties. This study presents the development and synthesis of a CMP based on Py-TBNBZ, achieved via a well-established [4 + 4] Schiff base reaction. The reaction involves two primary building blocks: 4,4′,4″,4‴-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (PyBZ-4CHO) and 4,4′,4″,4‴-(dibenzo[g,p]chrysene-2,7,10,15-tetrayl)tetraaniline (TBNBZ-4NH2). The structural and morphological characteristics of the synthesized Py-TBNBZ CMP material were systematically analyzed using advanced experimental techniques, confirming the successful formation of a robust framework. The Py-TBNBZ CMP prepared in this study showed a BET surface area (SBET) of 497 m2 g−1. Thermal analysis indicated a decomposition temperature (Td10) of 476 °C and a notable char yield of 74 wt%, as confirmed through BET and TGA measurements. One of the most notable features of the Py-TBNBZ CMP is its strong fluorescence, which enabled its application in chemical sensing. The material exhibited exceptional sensitivity and selectivity, allowing for the detection of K+ and Fe2+ ions and precise pH monitoring over a broad pH range (pH 2–10). The underlying sensing mechanisms were investigated and elucidated. Additionally, the Py-TBNBZ CMP demonstrated remarkable adsorption capabilities for hazardous gas vapors, including ammonia (NH3) and hydrogen chloride (HCl), underscoring its potential for environmental remediation. The flexibility of the Py-TBNBZ CMP distinguishes it from other CMPs and porous materials, enabling superior performance, enhanced applicability, and improved operational efficiency. This work highlights the advanced capabilities of Py-TBNBZ CMP and contributes to the ongoing development of innovative materials for adsorption, environmental protection, and next-generation sensing technologies.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.