Lirui Jia , Yang Qin , Xin Li , Hongzhuo Liu , Zhonggui He , Yongjun Wang
{"title":"STING-activating layered double hydroxide nano-adjuvants for enhanced cancer immunotherapy","authors":"Lirui Jia , Yang Qin , Xin Li , Hongzhuo Liu , Zhonggui He , Yongjun Wang","doi":"10.1016/j.biomaterials.2025.123294","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer vaccines represent a promising therapeutic strategy in oncology, yet their effectiveness is often hampered by suboptimal antigen targeting, insufficient induction of cellular immunity, and the immunosuppressive tumor microenvironment. Advanced delivery systems and potent adjuvants are needed to address these challenges, though a restricted range of adjuvants for human vaccines that are approved, and even fewer are capable of stimulating robust cellular immune response. In this work, we engineered a unique self-adjuvanted platform (MLDHs) by integrating STING agonists manganese into a layered double hydroxide nano-scaffold, encapsulating the model antigen ovalbumin (OVA). The MLDHs platform encompasses Mn-doped MgAl-LDH (MLMA) and Mn-doped MgFe-LDH (MLMF). Upon subcutaneous injection, OVA/MLDHs specifically accumulated within lymph nodes (LNs), where they were internalized by resident antigen-presenting cells. The endosomal degradation of MLDHs facilitated the cytoplasmic release of antigen and Mn<sup>2+</sup>, promoting cross-presentation and triggering the STING pathway, which in turn induced a potent cellular immune response against tumors. Notably, OVA/MLMF induced stronger M1 macrophage polarization and a more potent T-cell response within tumor-infiltrating lymphocytes compared to OVA/MLMA, leading to significant tumor regression in B16F10-OVA bearing mice with minimal adverse effects. Additionally, combining MLMF with the vascular disrupting agent Vadimezan disrupted the tumor's central region, typically resistant to immune cell infiltration, further extending survival in tumor-bearing mice. This innovative strategy may show great potential for improving cancer immunotherapy and offers hope for more effective treatments in the future.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123294"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002133","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer vaccines represent a promising therapeutic strategy in oncology, yet their effectiveness is often hampered by suboptimal antigen targeting, insufficient induction of cellular immunity, and the immunosuppressive tumor microenvironment. Advanced delivery systems and potent adjuvants are needed to address these challenges, though a restricted range of adjuvants for human vaccines that are approved, and even fewer are capable of stimulating robust cellular immune response. In this work, we engineered a unique self-adjuvanted platform (MLDHs) by integrating STING agonists manganese into a layered double hydroxide nano-scaffold, encapsulating the model antigen ovalbumin (OVA). The MLDHs platform encompasses Mn-doped MgAl-LDH (MLMA) and Mn-doped MgFe-LDH (MLMF). Upon subcutaneous injection, OVA/MLDHs specifically accumulated within lymph nodes (LNs), where they were internalized by resident antigen-presenting cells. The endosomal degradation of MLDHs facilitated the cytoplasmic release of antigen and Mn2+, promoting cross-presentation and triggering the STING pathway, which in turn induced a potent cellular immune response against tumors. Notably, OVA/MLMF induced stronger M1 macrophage polarization and a more potent T-cell response within tumor-infiltrating lymphocytes compared to OVA/MLMA, leading to significant tumor regression in B16F10-OVA bearing mice with minimal adverse effects. Additionally, combining MLMF with the vascular disrupting agent Vadimezan disrupted the tumor's central region, typically resistant to immune cell infiltration, further extending survival in tumor-bearing mice. This innovative strategy may show great potential for improving cancer immunotherapy and offers hope for more effective treatments in the future.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.