Yi Huang , Ali Osouli , Hui Li , Megan Dudaney , Jessica Pham , Valeria Mancino , Taranatee Khan , Baishali Chaudhuri , Nuria M. Pastor-Soler , Kenneth R. Hallows , Eun Ji Chung
{"title":"Therapeutic potential of urinary extracellular vesicles in delivering functional proteins and modulating gene expression for genetic kidney disease","authors":"Yi Huang , Ali Osouli , Hui Li , Megan Dudaney , Jessica Pham , Valeria Mancino , Taranatee Khan , Baishali Chaudhuri , Nuria M. Pastor-Soler , Kenneth R. Hallows , Eun Ji Chung","doi":"10.1016/j.biomaterials.2025.123296","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic kidney disease (CKD) is a widespread health concern, impacting approximately 600 million individuals worldwide and marked by a progressive decline in kidney function. A common form of CKD is autosomal dominant polycystic kidney disease (ADPKD), which is the most inherited genetic kidney disease and affects greater than 12.5 million individuals globally. Given that there are over 400 pathogenic <em>PKD1/PKD2</em> mutations in patients with ADPKD, relying solely on small molecule drugs targeting a single signaling pathway has not been effective in treating ADPKD. Urinary extracellular vesicles (uEVs) are naturally released by cells from the kidneys and the urinary tract, and uEVs isolated from non-disease sources have been reported to carry functional polycystin-1 (PC1) and polycystin-2 (PC2), the respective products of <em>PKD1</em> and <em>PKD2</em> genes that are mutated in ADPKD. uEVs from non-disease sources, as a result, have the potential to provide a direct solution to the root of the disease by delivering functional proteins that are mutated in ADPKD. To test our hypothesis, we first isolated uEVs from healthy mice urine and conducted a comprehensive characterization of uEVs. Then, PC1 levels and EV markers CD63 and TSG101 of uEVs were confirmed via ELISA and Western blot. Following characterization of uEVs, the <em>in vitro</em> cellular uptake, inhibition of cyst growth, and gene rescue ability of uEVs were demonstrated in kidney cells. Next, upon administration of uEVs <em>in vivo</em>, uEVs showed bioavailability and accumulation in the kidneys. Lastly, uEV treatment in ADPKD mice (<em>Pkd1</em><sup><em>fl/fl</em></sup><em>;Pax8-rtTA;Tet-O-Cre</em>) showed smaller kidney size, lower cyst index, and enhanced PC1 levels without affecting safety despite repeated treatment. In summary, we demonstrate the potential of uEVs as natural nanoparticles to deliver protein and gene therapies for the treatment of chronic and genetic kidney diseases such as ADPKD.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123296"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002157","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic kidney disease (CKD) is a widespread health concern, impacting approximately 600 million individuals worldwide and marked by a progressive decline in kidney function. A common form of CKD is autosomal dominant polycystic kidney disease (ADPKD), which is the most inherited genetic kidney disease and affects greater than 12.5 million individuals globally. Given that there are over 400 pathogenic PKD1/PKD2 mutations in patients with ADPKD, relying solely on small molecule drugs targeting a single signaling pathway has not been effective in treating ADPKD. Urinary extracellular vesicles (uEVs) are naturally released by cells from the kidneys and the urinary tract, and uEVs isolated from non-disease sources have been reported to carry functional polycystin-1 (PC1) and polycystin-2 (PC2), the respective products of PKD1 and PKD2 genes that are mutated in ADPKD. uEVs from non-disease sources, as a result, have the potential to provide a direct solution to the root of the disease by delivering functional proteins that are mutated in ADPKD. To test our hypothesis, we first isolated uEVs from healthy mice urine and conducted a comprehensive characterization of uEVs. Then, PC1 levels and EV markers CD63 and TSG101 of uEVs were confirmed via ELISA and Western blot. Following characterization of uEVs, the in vitro cellular uptake, inhibition of cyst growth, and gene rescue ability of uEVs were demonstrated in kidney cells. Next, upon administration of uEVs in vivo, uEVs showed bioavailability and accumulation in the kidneys. Lastly, uEV treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) showed smaller kidney size, lower cyst index, and enhanced PC1 levels without affecting safety despite repeated treatment. In summary, we demonstrate the potential of uEVs as natural nanoparticles to deliver protein and gene therapies for the treatment of chronic and genetic kidney diseases such as ADPKD.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.