Thi Be Ta Truong , Do Tuong Ha , Hien Duy Tong , Thuat T. Trinh
{"title":"Molecular investigation of pyrolysis and thermal gasification pathways in polyethylene microplastics degradation","authors":"Thi Be Ta Truong , Do Tuong Ha , Hien Duy Tong , Thuat T. Trinh","doi":"10.1016/j.cep.2025.110285","DOIUrl":null,"url":null,"abstract":"<div><div>Polyethylene (PE) microplastics are a persistent environmental threat due to their widespread presence and potential for long-range transport. This study uses reactive molecular dynamics (ReaxFF) simulations to explore the atomic-level thermal degradation mechanisms of PE microplastics through pyrolysis and thermal gasification (TG). A key finding of the research is the comparison of activation energies for pyrolysis and TG. Results show that pyrolysis begins with chain scission, producing volatile compounds, while TG generates hydrogen, carbon monoxide, water, and small hydrocarbons. Oxygen plays a key role in controlling gas fractions during TG. The activation energy for pyrolysis is 315 kJ/mol, higher than TG, which ranges from 197 to 262 kJ/mol depending on oxygen content, indicating TG is a more efficient degradation pathway. These findings offer molecular insights into PE microplastic degradation, aiding the development of targeted remediation strategies and advancing research on microplastic waste treatment.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"213 ","pages":"Article 110285"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001345","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylene (PE) microplastics are a persistent environmental threat due to their widespread presence and potential for long-range transport. This study uses reactive molecular dynamics (ReaxFF) simulations to explore the atomic-level thermal degradation mechanisms of PE microplastics through pyrolysis and thermal gasification (TG). A key finding of the research is the comparison of activation energies for pyrolysis and TG. Results show that pyrolysis begins with chain scission, producing volatile compounds, while TG generates hydrogen, carbon monoxide, water, and small hydrocarbons. Oxygen plays a key role in controlling gas fractions during TG. The activation energy for pyrolysis is 315 kJ/mol, higher than TG, which ranges from 197 to 262 kJ/mol depending on oxygen content, indicating TG is a more efficient degradation pathway. These findings offer molecular insights into PE microplastic degradation, aiding the development of targeted remediation strategies and advancing research on microplastic waste treatment.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.