{"title":"Large Positive Magnetoconductance in Carbon Nanoscrolls","authors":"Yu-Jie Zhong, Jia-Cheng Li, Xuan-Fu Huang, Ying-Je Lee, Ting-Zhen Chen, Jia-Ren Zhang, Angus Huang, Hsiu-Chuan Hsu, Carmine Ortix, Ching-Hao Chang","doi":"10.1021/acs.nanolett.4c03694","DOIUrl":null,"url":null,"abstract":"We theoretically demonstrate that carbon nanoscrolls, spirally wrapped graphene layers with open end points, can be characterized by a large positive magnetoconductance. We show that when a carbon nanoscroll is subject to an axial magnetic field of several Tesla, the ballistic conductance at low carrier densities of the nanoscroll increases by about 200%. Importantly, we find that this positive magnetoconductance is not only preserved in an imperfect nanoscroll (with disorder or mild interturn misalignment) but can even be enhanced in the presence of on-site disorder. We prove that the positive magnetoconductance comes about with the emergence of magnetic-field-induced zero-energy modes, specific to rolled-up geometries. Our results establish curved graphene systems as a new material platform displaying sizable magnetoresistive phenomena.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"30 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03694","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We theoretically demonstrate that carbon nanoscrolls, spirally wrapped graphene layers with open end points, can be characterized by a large positive magnetoconductance. We show that when a carbon nanoscroll is subject to an axial magnetic field of several Tesla, the ballistic conductance at low carrier densities of the nanoscroll increases by about 200%. Importantly, we find that this positive magnetoconductance is not only preserved in an imperfect nanoscroll (with disorder or mild interturn misalignment) but can even be enhanced in the presence of on-site disorder. We prove that the positive magnetoconductance comes about with the emergence of magnetic-field-induced zero-energy modes, specific to rolled-up geometries. Our results establish curved graphene systems as a new material platform displaying sizable magnetoresistive phenomena.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.