Can Typical Land Surface Model Parameterizations Support the Expected Soil Moisture Assimilation Efficiency?

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Jianhong Zhou, Jianzhi Dong, Huihui Feng, Kun Yang, Wade T. Crow, Zhiyong Wu, Xin Tian, Jiaxin Tian, Xiaogang Ma, Yaozhi Jiang
{"title":"Can Typical Land Surface Model Parameterizations Support the Expected Soil Moisture Assimilation Efficiency?","authors":"Jianhong Zhou, Jianzhi Dong, Huihui Feng, Kun Yang, Wade T. Crow, Zhiyong Wu, Xin Tian, Jiaxin Tian, Xiaogang Ma, Yaozhi Jiang","doi":"10.1029/2024wr038702","DOIUrl":null,"url":null,"abstract":"Remote sensing (RS) soil moisture retrievals are frequently assimilated into land surface models (LSMs) to enhance model estimates. However, soil moisture data assimilation (DA) efficiency is highly model-dependent, making it imperative to investigate whether current LSMs can achieve expected DA efficiencies and identify potential model limitations for DA. Here, we examine soil moisture DA efficiency based on a typical LSM by benchmarking it against a reference soil moisture merging scheme (i.e., assigning weights to combine multiple products into a single one). Both the merged and DA soil moisture estimates are comparable since they are based on identical error estimation theory and the same RS soil moisture data sets. In theory, the DA soil moisture estimates should be superior to the merged results—since DA can characterize the temporal variation of model error and propagate DA benefits into subsequent forecast steps. However, ground-based validation results indicate that DA soil moisture performs worse than simply merged results in regions where the LSM is less precise than RS retrievals. Further combing synthetic experiment, we confirm that the unexpected DA results are primarily attributable to land parameterization uncertainty, which leads to an unrealistic representation of soil moisture events (e.g., dry-downs) and significantly hampers the DA application. Given this, soil moisture DA is likely to remain suboptimal in achieving its desired goals. Therefore, this study emphasizes the urgency and necessity of reducing model parameterization uncertainty in land DA systems.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"24 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038702","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing (RS) soil moisture retrievals are frequently assimilated into land surface models (LSMs) to enhance model estimates. However, soil moisture data assimilation (DA) efficiency is highly model-dependent, making it imperative to investigate whether current LSMs can achieve expected DA efficiencies and identify potential model limitations for DA. Here, we examine soil moisture DA efficiency based on a typical LSM by benchmarking it against a reference soil moisture merging scheme (i.e., assigning weights to combine multiple products into a single one). Both the merged and DA soil moisture estimates are comparable since they are based on identical error estimation theory and the same RS soil moisture data sets. In theory, the DA soil moisture estimates should be superior to the merged results—since DA can characterize the temporal variation of model error and propagate DA benefits into subsequent forecast steps. However, ground-based validation results indicate that DA soil moisture performs worse than simply merged results in regions where the LSM is less precise than RS retrievals. Further combing synthetic experiment, we confirm that the unexpected DA results are primarily attributable to land parameterization uncertainty, which leads to an unrealistic representation of soil moisture events (e.g., dry-downs) and significantly hampers the DA application. Given this, soil moisture DA is likely to remain suboptimal in achieving its desired goals. Therefore, this study emphasizes the urgency and necessity of reducing model parameterization uncertainty in land DA systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信