{"title":"Supramolecular Gels as Active Tools for Reaction Engineering","authors":"David K. Smith","doi":"10.1002/anie.202502053","DOIUrl":null,"url":null,"abstract":"Supramolecular gels assembled from low-molecular-weight gelators (LMWGs) are fascinating soft materials for use in synthesis, combining aspects of hetero- and homogeneous systems. The unique combination of environments within a gel offers the ability to control reactivity in new ways. For example, self-assembly into a gel network can modify the reactivity of catalytic sites on the LMWG. Controlling the assembly of multiple LMWGs can result in integrated gels with orthogonal activities that could not normally co-exist. Enzymes encapsulated within self-assembled gels can exhibit superactivity, extending their use into solvent media more appropriate for organic synthesis. Highly reactive species, such as ligand-free nanoparticles or moisture/air-sensitive organometallics can be protected within the unique environment of a supramolecular gel, facilitating their use in ambient conditions, potentially opening up the use of such species to non-specialist researchers. Beyond fundamental chemistry, performing reactions in gels leads to the emerging concept of gels as ‘nanoreactors’. Smart chemical engineering methods are enabling the fabrication of materials and devices for use in a variety of synthetic workflows, potentially transforming the way synthesis is done. In summary, this review provides an overview of key concepts and signposts the way towards future developments of gels as active tools for reaction engineering.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"4 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202502053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supramolecular gels assembled from low-molecular-weight gelators (LMWGs) are fascinating soft materials for use in synthesis, combining aspects of hetero- and homogeneous systems. The unique combination of environments within a gel offers the ability to control reactivity in new ways. For example, self-assembly into a gel network can modify the reactivity of catalytic sites on the LMWG. Controlling the assembly of multiple LMWGs can result in integrated gels with orthogonal activities that could not normally co-exist. Enzymes encapsulated within self-assembled gels can exhibit superactivity, extending their use into solvent media more appropriate for organic synthesis. Highly reactive species, such as ligand-free nanoparticles or moisture/air-sensitive organometallics can be protected within the unique environment of a supramolecular gel, facilitating their use in ambient conditions, potentially opening up the use of such species to non-specialist researchers. Beyond fundamental chemistry, performing reactions in gels leads to the emerging concept of gels as ‘nanoreactors’. Smart chemical engineering methods are enabling the fabrication of materials and devices for use in a variety of synthetic workflows, potentially transforming the way synthesis is done. In summary, this review provides an overview of key concepts and signposts the way towards future developments of gels as active tools for reaction engineering.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.