Oxygen-Substituted Porous C2N Frameworks as Efficient Electrocatalysts for Carbon Dioxide Electroreduction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuai Wang, Shujie Zhou, Zhipeng Ma, Nana Gao, Rahman Daiyan, Joshua Leverett, Yihao Shan, Xiaofeng Zhu, Yufei Zhao, Qiang Liu, Rose Amal, Xunyu Lu, Tianxi Liu, Markus Antonietti, Yinguang Chen, Qingran Zhang, Zhihong Tian
{"title":"Oxygen-Substituted Porous C2N Frameworks as Efficient Electrocatalysts for Carbon Dioxide Electroreduction","authors":"Shuai Wang, Shujie Zhou, Zhipeng Ma, Nana Gao, Rahman Daiyan, Joshua Leverett, Yihao Shan, Xiaofeng Zhu, Yufei Zhao, Qiang Liu, Rose Amal, Xunyu Lu, Tianxi Liu, Markus Antonietti, Yinguang Chen, Qingran Zhang, Zhihong Tian","doi":"10.1002/anie.202501896","DOIUrl":null,"url":null,"abstract":"The electrochemical carbon dioxide reduction reaction (CO2RR) provides a green avenue for decarbonizing the conventional chemical industries. Here, a structure–selectivity relationship of catalysts is pivotal for the control of a highly selective and active CO2RR pathway. We report the fabrication of an oxygen-substituted C2N as metal-free catalyst (O-C2N) for electrochemical CO2-to-CO conversion with tunable O microenvironment. Combined spectroscopic analysis reveals a fine tailored N-C-O moiety in O-C2N, where C-O-C species (e.g. ring in-plane ether) become the dominant oxygen configurations at higher pyrolysis temperatures. Based on experimental observations, a correlation between the exocyclic O-substituted N-C-O-C moieties and CO selectivity is established, giving clear chemical tools for active structure design. The optimized O-C2N electrocatalysts with the dominant appearance of C-O-C moieties exhibits an outstanding 2e- CO2RR performance with a CO selectivity up to 94.8%, which can be well maintained in a practical flow-cell reactor with an adjustable syngas feature.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"33 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) provides a green avenue for decarbonizing the conventional chemical industries. Here, a structure–selectivity relationship of catalysts is pivotal for the control of a highly selective and active CO2RR pathway. We report the fabrication of an oxygen-substituted C2N as metal-free catalyst (O-C2N) for electrochemical CO2-to-CO conversion with tunable O microenvironment. Combined spectroscopic analysis reveals a fine tailored N-C-O moiety in O-C2N, where C-O-C species (e.g. ring in-plane ether) become the dominant oxygen configurations at higher pyrolysis temperatures. Based on experimental observations, a correlation between the exocyclic O-substituted N-C-O-C moieties and CO selectivity is established, giving clear chemical tools for active structure design. The optimized O-C2N electrocatalysts with the dominant appearance of C-O-C moieties exhibits an outstanding 2e- CO2RR performance with a CO selectivity up to 94.8%, which can be well maintained in a practical flow-cell reactor with an adjustable syngas feature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信