{"title":"Synergetic Multiple Charge-Transfer Excited States for Anti-Quenching and Rapid Spin-Flip Multi-Resonance Thermally Activated Delayed Fluorescence Emitter","authors":"Lixiao Guo, Weibo Cui, Linjie Li, Yexuan Pu, Kuan Wang, Pingping Zheng, Yue Wang, Chenglong Li","doi":"10.1002/adma.202500269","DOIUrl":null,"url":null,"abstract":"The development of multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters exhibiting high efficiency, narrowband emission, rapid reverse intersystem crossing rate (<i>k</i><sub>RISC</sub>), and suppressed concentration quenching simultaneously is of great significance yet a formidable challenge. Herein, an effective strategy is presented to realize the above target by synergizing multiple charge-transfer excited states, including short-range charge transfer (SRCT), through-bond charge transfer (TBCT), and through-space charge transfer (TSCT). The proof-of-concept emitter 4tCz2B exhibits a bright green emission with a narrow full width at half maximum (FWHM) of 21 nm (0.10 eV) in solution, high photoluminescence quantum yield of 97%, fast <i>k</i><sub>RISC</sub> of 7.8 × 10<sup>5</sup> s<sup>−1</sup> and significantly suppressed concentration quenching in film state. As a result, the sensitizer-free organic light-emitting diodes (OLEDs) achieve maximum external quantum efficiencies (EQE<sub>max</sub>S) of over 34.5% together with an unaltered emission peak at 508 nm and FWHM of 26 nm at doping concentrations ranging from 3 to 20 wt.%. Even at a doping ratio of 50 wt.%, EQE<sub>max</sub> is still as high as 25.5%. More importantly, the non-sensitized devices exhibit significantly reduced efficiency roll-offs, with a minimum value of 13.4% at a brightness of 1000 cd m<sup>−2</sup>.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"71 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters exhibiting high efficiency, narrowband emission, rapid reverse intersystem crossing rate (kRISC), and suppressed concentration quenching simultaneously is of great significance yet a formidable challenge. Herein, an effective strategy is presented to realize the above target by synergizing multiple charge-transfer excited states, including short-range charge transfer (SRCT), through-bond charge transfer (TBCT), and through-space charge transfer (TSCT). The proof-of-concept emitter 4tCz2B exhibits a bright green emission with a narrow full width at half maximum (FWHM) of 21 nm (0.10 eV) in solution, high photoluminescence quantum yield of 97%, fast kRISC of 7.8 × 105 s−1 and significantly suppressed concentration quenching in film state. As a result, the sensitizer-free organic light-emitting diodes (OLEDs) achieve maximum external quantum efficiencies (EQEmaxS) of over 34.5% together with an unaltered emission peak at 508 nm and FWHM of 26 nm at doping concentrations ranging from 3 to 20 wt.%. Even at a doping ratio of 50 wt.%, EQEmax is still as high as 25.5%. More importantly, the non-sensitized devices exhibit significantly reduced efficiency roll-offs, with a minimum value of 13.4% at a brightness of 1000 cd m−2.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.